A dusty analogy – a visual demonstration of ionisation in a mass spectrometer

Keith S. Taber

Amy was a participant in the Understanding Science project. She was interviewed when she had just started her 'A level' (i.e., college) chemistry, and one of the topics that the course had started with was mass spectrometry. She gave me a very detailed account of what she had been taught, despite both casting doubt on the logic of parts of the account, and of the accuracy of her own recollection (see Amy's account of mass spectrometry *). One of the unconvincing aspects of the new topic seemed to be the way positive ions were produced by bombarding atoms with (negative) electrons – although she had clearly picked up the point.

She reported that her teacher had demonstrated this point with an analogy. She told me that the teacher was using a lot of analogies, and she seemed to find them a little silly, implying that this analogy was not helpful. This particular example involved a board duster and two matchboxes. One matchbox sat on the duster, and was knocked off by the other matchbox being projected at it.

I thought this was quite interesting, as Amy did think the formation of positive ions was counter-intuitive, but had remembered that this is what happened, and seemed to both remember and understand the use of the analogy – even though she was somewhat dismissive of it. I didn't get the chance to explore the issue at the time, but wondered if this was an example of a student maybe not appreciating the role of models and analogies (and simulation) in science itself, and so feeling that using such a device in teaching science was a little 'naff'. 

Amy's explanation of the stupid-sounding bit

Amy was dismissive of the teacher's analogical teaching model, even though she seemed to have remembered what he was illustrating:

I mean there was a couple of bits there that you didn't seem too sure about like, like er you know you sort of, you seemed to almost disown the fact that this electron gun is going to make these things into positive ions, you didn't seem very convinced by that?

Erm – I dunno if it's that I'm not convinced it just sounds weird, because it's like erm (pause, c.2s) I dunno, well it's like it's not something which you can see,

No.

and it's like, I dunno, he did this sort of example using a duster and two matchboxes, and, which wasn't very good, so.(Amy was laughing at this point)

Tell me about that then, how does that work? You see I know a bit about this, I don't know about the duster and the matchboxes.

Like no disrespect to our teacher but he uses these analogies, a duster being an atom with matchboxes being the electrons and something, and them being knocked off, because, yeah.

So he threw a matchbox at a duster that had a matchbox and he knocked the matchbox off the duster?

Pretty much.

See, it works for me,

(Amy laughs)

and you've remembered it?

Well, yeah, but – yeah.

Erm, So you've got this neutral atom, and you're firing negative electrons at it?

Yeah.

Now if you say that to somebody who doesn't know anything about what's going to happen, what do you think might happen if you fire negative electrons at a neutral atom?, what might you get?

A negative ion.

That's what you'd expect I think, isn't it, … well obviously you are firing negative things at it, so you will get negative. But in fact that's not what seems to happen. So he was trying to explain to you why firing negative things, at something neutral, you might end up with something positive. 'cause that's not obvious and logical, is it?

Yeah.

So if you throw a matchbox at a duster that contains a matchbox, you might knock the match box off?

Yeah (Amy laughs).

There is clearly a 'cultural' difference here, between the interviewer (a science teacher by background) and the interviewee (the learner), in that the interviewer 'got' the use of the demonstration as a pretty neat physical analogy, whereas the student clearly was dismissive. In this case Amy's lack of engagement with the modelling process did not seem to limit her learning, but her attitude demonstrated a lack of awareness of the status and roles of models in science (and in learning science) which has potential to act as a deficiency learning impediment if she cannot see how teaching models and analogies can help form mental models of scientific systems.


Author: Keith

Former school and college science teacher, teacher educator, research supervisor, and research methods lecturer. Emeritus Professor of Science Education at the University of Cambridge.

Leave a Reply

Your email address will not be published. Required fields are marked *

Discover more from Science-Education-Research

Subscribe now to keep reading and get access to the full archive.

Continue reading