Even Oxbridge professors have misconceptions

Being a science professor is no assurance of understanding Newton's mechanics


Keith S. Taber


…this author had just written that
all matter is in uniform motion unless acted upon by an external force
but did not seem to appreciate that
any matter acted upon by an external force will not be in uniform motion


I started a new book today. 'The Watch on the Heath. Science and Religion before Darwin' had been on my pile of books to read for a while (as one can acquire interesting titles faster than find time to actually read them).


'The Watch on the Heath'

by Prof. Keith Thomson


The title is a reference to the analogy adopted at the start of William Paley's classic book on natural theology. Paley (1802) argued that if one was out walking across a heath and a foot struck an object on the ground, one would make very different assumptions if the object transpired to be a stone or a pocket watch. The stone would pass without much thought – there was no great mystery about how it came to be on the heath. But a pocket watch is an intricate mechanism composed of a multitude of especially shaped and arranged pieces fashioned from different materials. A reasonable person could not think it was an arbitrary and accidentally collated object – rather it clearly had a purpose, and so had a creator – a watchmaker.



Paley used this as an analogy for the complexity of the living world. Analogies are often used by teachers and science communicators as a means of making the unfamiliar familiar – a way of suggesting something that is being introduced is actually like something the audience already knows about and feels comfortable with.

Read about analogies in science

Paley was doing something a little different – his readers would already know about both watches and living things, and he was developing the analogy to make an argument about the nature of living things as being designed. (Living things would be familiar, but Paley wanted to invite his reader to think about them in a way they might find unfamiliar.) According to this argument, organisms were so complex that, by analogy with a watch, it followed they also were created for a purpose, and by a creator.

Even today, Paley's book is an impressive read. It is 'one long argument' (as Darwin said of his 'Origin of Species') that collates a massive amount of evidence about the seeming design of human anatomy and the living world. Paley was not a scientist in the modern sense, and he was not even a naturalist who collected natural history specimens. He was a priest and philosopher / theologian who clearly thought that publishing his argument was important enough to require him to engage in such extensive scholarship that in places the volume gives the impression of being a medical textbook.

Paley's work was influential and widely read, but when Darwin (1859) presented his own long argument for evolution by natural selection there began to be a coherent alternative explanation for all that intricate complexity. By the mid-twentieth century a neo-Darwinian synthesis (incorporating work initiated by Mendel, developments in statistics, and the advent of molecular biology) made it possible to offer a feasible account that did not need a watch-maker who carefully made his or her creatures directly from a pre-designed pattern. Richard Dawkins perverted Paley's analogy in calling one of his books 'The Blind Watchmaker' reflecting the idea that evolution is little more than the operation of 'blind' chance.

Arguably, Darwin's work did nothing to undermine the possibility of a great cosmic architect and master craft-person having designed the intricacies of the biota – but only showed the subtlety required of such a creator by giving insight into the natural mechanisms set up to slowly bring about the productions. (The real challenge of Darwin's work was that it overturned the idea that there was any absolute distinction between humans and the rest of life on earth – if humans are uniquely in the image of God then how does that work in relation to the gradual transition from pre-human ancestors to the first humans?)

Read 'Intergenerational couplings in the family. A thought experiment about ancestry'

Arguably Darwin said nothing to undermine the omnipotence of God, only the arrogance of one branch of the bush of life (i.e., ours) to want to remake that God in their image. Anyway, there are of course today a range of positions taken on all this, but this was the context for my reading some questionable statements about Newtonian mechanics.

Read about science and religion

Quantum quibbling

My reading went well till I got to p.27. Then I was perturbed. It started with a couple of quibbles. The first was a reference to

"…the modern world of quantum physics, where Einstein's relativity and Heisenberg's uncertainty reign."

Thomson, 2005: 27

"Er, no" I thought. Relativity and quantum theory are not only quite distinct theories, but, famously, the challenge of finding a way to make these two areas of physics, relativity theory and quantum mechanics, consistent is seen as a major challenge. The theories of relativity seem to work really well on the large scale and quantum theory works really well on the smallest scales, but they do not seem to fit together. "Einstein's relativity" is not (yet, at least) found within the "world of quantum physics".

Still, this was perhaps just a rhetorical flourish.

The Newtonian principle of inertia

But later in the same paragraph I read about how,

"Newton…showed that all matter is in uniform motion (constant velocity, including a velocity of zero) unless acted upon by an external force…Newton showed that an object will remain still or continue to move at a constant speed in the same direction unless some external force changes things."

Thomson, 2005: 27

This is known as Newton's first law of motion (or the principle of inertia). Now, being pedantic, I thought that surely Newton did not show this.

It is fair to say, I suggest, that Newton suggested this, proposed it, mooted it; perhaps claimed it was the case; perhaps showed it was part of a self-consistent description – but I am not sure he demonstrated it was so.

Misunderstanding Newton's first law

This is perhaps being picky and, of itself, hardly worth posting about, but this provides important background for what I read a little later (indeed, still in the same paragraph):

"Single forces always act in straight lines, not circles. Any trajectory other than a straight line must be the result of multiple forces acting together."

Thomson, 2005: 27

No!

The first part of this is fair enough – a force acts between two bodies (say the earth and the sun) and is considered to act along a 'line of action' (such as the line between the centres of mass of the earth and the sun). In the Newtonian world-view, the gravitational force between the earth and sun acts on both bodies along that line of action. 1

However, the second sentence ("any trajectory other than a straight line must be the result of multiple forces acting together") is completely wrong.

These two sentences are juxtaposed as though there is a logical link: "Single forces always act in straight lines, not circles. [So therefore] any trajectory other than a straight line must be the result of multiple forces acting together." This only follows if we assume that an object must always be moving in the direction of a force acting on it. But Newton's second law tells us that acceleration (and so the change in velocity) occurs in the direction of the force.

This is confusing the sense of a change with its outcome – a bit like thinking that a 10 m rise in sea level will lead to the sea being 10 m deep, or that if someone 'puts on 20 kilos' they will weigh 200 N. A 'swing to Labour' in an election does not assure Labour of a victory unless the parties were initially on par.

The error here is like assuming that any debit from a bank account must send it overdrawn:
taking £10 from a bank account means there will be £10 less in the account,
but not necessary that the balance becomes -£10!

Changing direction is effortless (if there is an external force acting)

Whenever a single force acts on a moving object where the line of action does not coincide with the object's direction of travel then the object will change direction. (That is, a single force will only not lead to a change of direction in the very special case where the force aligns with or directly against to the direction of travel.) So, electrons in a cathode ray tube can be shown to follow a curved path when a (single) magnetic force is applied, and an arrow shot from a castle battlement horizontally will curve down to the grounds because of the (single) effect of gravitational force. (There are frictional forces acting as well, but they only modify the precise shape of that curve which would still be found if the castle was on a planet with no atmosphere – as long as the archer could hold her breath long enough to get the arrow away.)

The lyrics of a popular song declare "arc of a diver – effortlessly". 2 But diving into a pool is only effortless (once you have pushed off) because the diver is pulled into an arc by their gravitational attraction with the earth – so even if you dive at an angle above the horizontal, a single force is enough to change your direction and bring you down.


"Arc of a diver – effortlessly"

© Pelle Cass. This image is used with kind permission of the artist.

(This amazing artwork is by the photographer Pelle Cass. This is one of a series ('Crowded Fields') that can be viewed at https://pellecass.com/crowded-fields.)


So, there is a mistake in the science here. Either the author has simply made a slip (which can happen to anyone) or he is operating with an alternative conception inconsistent with Newton's laws. The same can presumably be said about any editor or copy editor who checked the manuscript for the publisher.

Read about alternative conceptions

Misunderstanding force and motion

That might not be so unlikely – as force and motion might be considered the prototype case of a science topic where there are common alternative conceptions. I have seen estimates of 80%+ of people having alternative conceptions inconsistent with basic Newtonian physics. After all, in everyday life, you give something a pull or a push, and it usually moves a bit, but then always come to a stop. In our ordinary experience stones, footballs, cricket balls, javelins, paper planes, darts – or anything else we might push or pull – fail to move in a straight line at a constant speed for the rest of eternity.

That does not mean Newton was wrong, but his ideas were revolutionary because he was able to abstract to situations where the usual resistive forces that are not immediately obvious (friction, air resistance, viscosity) might be absent. That is, ideal scenarios that probably never actually occur. (Thus my questioning above whether Newton really 'showed' rather than postulated these principles.)

So, it is not surprising an author might hold a common alternative conception ('misconception') that is widely shared: but the author had written that

  • all matter is in uniform motion unless acted upon by an external force

yet did not seem to appreciate the corollary that

  • any matter acted upon by an external force will not be in uniform motion

So, it seems someone can happily quote Newton's laws of motion but still find them so counter-intuitive that they do not apply them in their thinking. Again, this reflects research which has shown that graduates who have studied physics and done well in the examinations can still show alternative conceptions when asked questions outside the formal classroom setting. It is as if they learn the formalism for the exams, but never really believe it (as, after all, real life constantly shows us otherwise).

So, this is all understandable, but it seems unfortunate in a science book that is seeking to explain the science to readers. At this point I decided to remind myself who had written the book.

We all have alternative conceptions

Keith Thomson is a retired academic, an Emeritus Fellow at Kellog College Oxford, having had an impressive career including having been a Professor of Biology at Yale University and later Director of the Oxford University Museum and Professor of Natural History. So, here we have a highly successful academic scientist (not just a lecturer in some obscure university somewhere – a professor at both Yale and Oxford), albeit with expertise in the life sciences, who seems to misunderstand the basic laws of physics that Newton postulated back in 1687.

Prof. Thomson seems to have flaws in his knowledge in this area, yet is confident enough of his own understanding to expose his thinking in writing a science book. This, again, is what we often find in science teaching – students who hold alternative conceptions may think they understand what they have been taught even though their thinking is not consistent with the scientific accounts. (This is probably true of all of us to some degree. I am sure there must be areas of science where I am confident in my understanding, but where that confidence is misplaced. I likely have misconceptions in topics areas where Prof. Thomson has great expertise.)

A balance of forces?

This could have been just a careless slip (of the kind which once made often looks just right when we reread our work multiple times – I know this can happen). But, over the page, I read:

"…in addition to the technical importance of Newton's mathematics, the concept of 'a balance of forces' keeping the moon circling the earth and the earth in orbit around the sun, quickly became a valuable metaphor…"

Thomson, 2005: 27

Again – No!

If there is 'balance of forces' then the forces effectively cancel, and there is no net force. So, as "all matter is in uniform motion (constant velocity, including a velocity of zero) unless acted upon by an external force", a body subject to a balance of forces continues in "uniform motion (constant velocity…)" – that is, it continues in a straight line at a constant speed. It does not circle (or move in an ellipse). 3

Again, this seems to be an area where people commonly misunderstand Newton's principles, and operate with alternative conceptions. Learners often think that Newton's third law (sometimes phrased in terms of 'equal and opposite forces') implies there will always be balanced forces!

Read about learning difficulties and Newton's third law

The reason the moon orbits the earth, and the reason the earth orbits the sun, in the Newtonian world-view is because in each case the orbiting body is subject to a single force which is NOT balanced by any countering force. As the object is "acted upon by an external force" (which is not balanced by any other force) it does not move "in uniform motion" but constantly changes direction – along its curved orbit. According to Newton's law of motion, one thing we can always know about a body with changing motion (such as one orbiting another body) is that the forces on it are not balanced.

But once circular motion was assumed as being the 'natural' state of affairs for heavenly bodies, and I know from my own teaching experience that students who understand Newtonian principle in the context of linear motion can still struggle to apply this to circular motion. 4


Two conceptions of orbital motion (one canonical, the other a misconception commonly offered by students). From Taber, K. S., & Brock, R. (2018). A study to explore the potential of designing teaching activities to scaffold learning: understanding circular motion.

I even developed a scaffolding tool to help students make this transition, by helping them work through an example in very simple steps, but which on testing had modest effect – that is, it seemed to considerably help some students apply Newton's laws to orbital motion, but could not bridge that transition for others (Taber & Brock, 2018). I concluded even more basic step-wise support must be needed by many learners. Circular motion being linked to a net (unbalanced) centripetal force seems to be very counter-intuitive to many people.

To balance or not to balance

The suggestion that a balance of forces leads to change occurs again a little later in the book, in reference to James Hutton's geology,

"…Hutton supported his new ideas both with solid empirical evidence and an underlying theory based on a Newtonian balance of forces. He saw a pattern in the history of the rocks: gradually worn down by erosion, washed into the seas, accumulating as sediments, raised up as new dry land, only to be eroded again."

Thomson, 2005: 39

A balance of forces would not lead to rocks being "gradually worn down by erosion, washed into the seas, accumulating as sediments, raised up as new dry land, only to be eroded again". Indeed if all the relevant forces were balanced there would be no erosion, washing, sedimentation, or raising.

Erosion, washing, sedimentation, raising up ALL require an imbalance of forces, that is, a net force to bring about a change. 5

Reading on…

This is not going to stop me persevering with reading the book*, but one can begin to lose confidence in a text in situations such as these. If you know the author is wrong on some points that you already know about, how can you be confident of their accounts of other topics that you are hoping to learn about?

Still, Prof. Thomson seems to be wrong about something that the majority of people tend to get wrong, often even after having studied the topic – so, perhaps this says more about the hold of common intuitive conceptions of motion than the quality of Prof. Thomson's scholarship. Just like many physics learners – he has learnt Newton's laws, but just does not seem to find them credible.


Sources cited:
  • Darwin, C. (1859). The Origin of Species by Means of Natural Selection, or the preservation of favoured races in the struggle for life. John Murray.
  • Dawkins, R. (1988). The Blind Watchmaker. Penguin Books.
  • Paley, W. (1802/2006). Natural Theology: Or Evidence of the Existence and Attributes of the Deity, Collected from the Appearances of Nature (M. D. Eddy & D. Knight, Eds.). Oxford University Press.
  • Rosen, E. (1965/1995) Copernicus on the phases and the light of the planets, in Rosen, E. (1995). Copernicus and his successors (E. Hilfstein, Ed.). The Hambledon Press.
  • Taber, K. S., & Brock, R. (2018). A study to explore the potential of designing teaching activities to scaffold learning: understanding circular motion. In M. Abend (Ed.), Effective Teaching and Learning: Perspectives, strategies and implementation (pp. 45-85). New York: Nova Science Publishers. [Read the author's manuscript version]
  • Thomson, K. (2005). The Watch on the Heath: Science and religion before Darwin. HarperCollins.
  • Watts, M. and Taber, K. S. (1996) An explanatory gestalt of essence: students' conceptions of the 'natural' in physical phenomena, International Journal of Science Education, 18 (8), pp.939-954.

Notes

1 Though not in the world-view offered by general relativity where the mass of the sun distorts space-time enough for the earth to orbit.


2 The title track from Steve Winwood's 1980 solo album 'Arc of a Diver'


3 We have known since Kepler that the planets orbit the sun following ellipses (to a first order of approximation*), not perfect circles – but this does not change the fundamental point here: moving in an ellipse involves continuous changes of velocity. (* i.e., ignoring the perturbations due to the {much smaller} forces between the orbiting bodies.**)

[Added, 20220711]: these perturbations are very small compared with the main sun-planet interactions, but they can still be significant in other ways:

"…the single most spectacular achievement in the long history of computational astronomy, namely, the discovery of the planet Neptune through the perturbations which it produced in the motion of Uranus."

Rosen, 1965/1995, p.81

4 What is judged as 'natural' is often considered by people as not needing any further explanation (Watts and Taber, 1996).


5 This reference to Hutton's ideas seems to preview a more detailed treatment of the new geology in a later chapter in the book (that I have not yet reached), so perhaps as I read on I will find a clearer explanation of what is meant by these changes being based on a theory of balance of forces.* Still, the impression given in the extract quoted is that, as with orbits, a balance of forces brings about change.

* Addendum: I have now read on, see: 'Plus ça change – balancing forces is hard work'

Do nerve signals travel faster than the speed of light?

Keith S. Taber

I have recently posted on the blog about having been viewing some of the court testimony being made available to the public in the State of Minnesota v. Derek Michael Chauvin court case (27-CR-20-12646: State vs. Derek Chauvin).

[Read 'Court TV: science in the media']

Prof. Martin J. Tobin, M.D., Loyola University Chicago Medical Center

I was watching the cross examination of expert witness Dr Martin J. Tobin, Professor of Pulmonary and Critical Care Medicine by defence attorney Eric Nelson, and was intrigued by the following exchange:

Now you talked quite a bit about physics in your direct testimony, agreed?

Yes

And you would agree that physics, or the application of physical forces, is a constantly changing, er, set of circumstances.

I did not catch what you said.

Sure. You would agree with me, would you not, that when you look at the concepts of physics, these things are constantly changing, right?

Yeah, all of science is constantly changing.

Constant! I mean,

Yes.

in milliseconds and nanoseconds, right?

Yes.

And so if I put this much weight [Nelson demonstrating by shifting position] or this much weight [shifting position], all of the formulas [sic] and variations, will change from second to second, from millisecond to millisecond, nanosecond to nanosecond, agreed.

I agree.

Similarly, biology sort of works the same way. Right?

Yes.

My heart beats, my lungs breathe [sic], my brain is sending millions of signals to my body, at all times.

Correct.

Again, even, I mean, faster than the speed of light, right?

Correct.

Millions of signals every nanosecond, right?

Yes.

Day 9. 27-CR-20-12646: State vs. Derek Chauvin

Agreeing – but talking about different things?

The first thing that struck me here concerns what seems to me to be Mr Nelson and Dr Tobin talking at cross-purposes – that neither participant acknowledged (and so perhaps neither were aware of).

I think Nelson is trying to make an argument that the precise state of Mr George Floyd (who's death is at the core of the prosecution of Mr Chauvin) would have been a dynamic matter during the time he was restrained on the ground by three police officers (an argument being made in response to the expert's presentation of testimony suggesting it was possible to posit fairly precise calculations of the forces acting during the episode).

This seems fairly clear from the opening question of the exchange above:

Now you talked quite a bit about physics in your direct testimony, agreed? … And you would agree that physics, or the application of physical forces, is a constantly changing, er, set of circumstances.

However, Dr Tobin does not hear this clearly (there are plexiglass screens between them as COVID precautions, and Nelson acknowledges that he is struggling with his voice by this stage of the trial).

Nelson re-phrases, but actually says something rather different:

You would agree with me, would you not, that when you look at the concepts of physics, these things are constantly changing, right?

['These things' presumably refers to 'the application of physical forces', but if Dr Tobin did not hear Mr Nelson's previous utterance then 'these things' would be taken to be 'the concepts of physics'.]

So, now it is not the forces acting in a real world scenario which are posited to be constantly changing, but the concepts of physics. Dr Tobin's response certainly seems to make most sense if the question is understood in terms of the science itself being in flux:

Yeah, all of science is constantly changing.

Given that context, the following agreement that these changes are occurring "in milliseconds and nanoseconds" seems a little surreal, as it is not quite clear in what sense science is changing on that scale (except in the sense that science is continuing constantly – certainly not in the sense that canonical accounts of concepts shift at that pace: say, in the way Einstein's notions of physics came to replace those of Newton).

In the next exchange the original context Nelson had presented ("the application of physical forces, is … constantly changing") becomes clearer:

And so if I put this much weight [Nelson demonstrating by shifting position] or this much weight [shifting position], all of the formulas and variations, will change from second to second, from millisecond to millisecond, nanosecond to nanosecond, agreed.

I agree.

As a pedantic science teacher I would suggest that it is not the formulae of physics that change, but the values to be substituted into the system of equations derived from them to describe the particular event: but I think the intended meaning is clear. Dr Tobin is a medical expert, not a physicist nor a science teacher, and the two men appear to be agreeing that the precise configurations of forces on a person being restrained will constantly change, which seems reasonable. I guess that is what the jury would take from this.

If my interpretation of this dialogue is correct (and readers may check the footage and see how they understand the exchange) then at one point the expert witness was agreeing with the attorney, but misunderstanding what he was being asked about (how in the real world the forces acting are continuously varying, not how the concepts of science are constantly being developed). Even if I am right, this does not seem problematic here, as the conversation shifted to the intended focus quickly (an example of Bruner's 'constant transnational calibration' perhaps?).

However, this reminds me of interviews with students I have carried out (and others I have listened to undertaken by colleagues), and of classroom episodes where teacher and student are agreeing – but actually are talking at cross purposes. Sometimes it becomes obvious to those involved that this is what has happened – but I wonder how often it goes undetected by either party. (And how often there are later recriminations – "but you said…"!)

Simplifying biology?

The final part of the extract above also caught my attention, as I was not sure what to make of it.

My heart beats, my lungs breathe, my brain is sending millions of signals to my body, at all times.

Correct.

Again, even, I mean, faster than the speed of light, right?

Correct.

Millions of signals every nanosecond, right?

Yes.

How frequently do our brains send out signals?

I am a chemistry and physicist, not a biologist so I was unsure what to make of the millions of signals the brain is sending out to the rest of the body every nanosecond.

I can certainly beleive that perhaps in a working human brain there will be billions of neutrons firing every nanosecond as they 'communicate' with each other. If my brain has something like 100 000 000 000 neurons then that does not seem entirely unreasonable.

But does the brain really send signals to the rest of the body (whether through nerves or by the release of hormones) at a rate of nx106/10-9 s-1 ("millions of signals every nanosecond"), that is,  multiples of 1015 signals per second, as Mr Nelson suggests and Dr Tobin agrees?

Surely not? Dr Tobin is a professor of medicine and a much published expert in his field and should know better than me. But I would need some convincing.

Biological warp-drives

I will need even more convincing that the brain sends signals to the body faster than the speed of light. Both nervous and hormonal communication are many orders of magnitude slower than light speed. The speed of light is still considered to be a practical limit on the motion of massive objects (i.e., anything with mass). Perhaps signals could be sent by quantum entanglement – but that is not how our nervous and endocrine systems function?

If Mr Nelson and Dr Tobin do have good reason to believe that communication of signals in the human body can travel faster than the speed of light then this could be a major breakthrough. Science and technology have made many advances by mimicking, or learning from, features of the structure and function of living things. Perhaps, if we can learn how the body is achieving this impossible feat, warp-drive need not remain just science fiction.

A criminal trial is a very serious matter, and I do not intend these comments to be flippant. I watched the testimony genuinely interested in what the science had to say. The real audience for this exchange was the jury and I wonder what they made of this, if anything. Perhaps it should be seen as poetic language making a general point, and not a technical account to be analysed pedantically. But I think it does raise issues about how science is communicated to non-experts in contexts such as courtrooms.

This was an expert witness for the prosecution (indeed, very much for the prosecution) who was agreeing with the defence counsel on a point strictly contrary to accepted science. If I was on a jury, and an expert made a claim that I knew was contrary to current well-established scientific thinking (whether the earth came into being 10 000 years ago, or the brain sends out signals that travel faster then the speed of light) this would rather undermine my confidence in the rest of their expert testimony.

 

 

 

They're both attracting each other but this one's got a larger force

Iodine's got a larger force that lithium, so it will pull towards the lithium more 

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching.

When she was shown an image representing the electron cloud around an iodide ion polarised by an adjacent lithium ion Annie interpreted this as the iodine exerting a greater force on the lithium than vice versa.

Focal figure presented to Annie

What about this, any idea about this?

It's the same sort of thing again – the lithium combines with the iodine – to make a stable outer shell between the two, by sharing electrons, but the lithium has a smaller charge, or smaller pull than the iodine, so the actual shape of it goes in towards. It sort of goes inwards because its attracting the lithium, whereas if the lithium was attracting it, it would be like a reverse picture.

So, so the iodine's attracting what, sorry?

The lithium.

The iodine's attracting the lithium, and the lithium is not attracting the iodine?

Yeah, they're both attracting each other but because this one's got a larger force, then it will pull towards the lithium more.

The iodine's got a larger force,

Yeah.

so it will pull towards the lithium more?

Yeah.

Any image used to represented chemical bonding is necessarily a kind of model, and a partial representation – and there are a range of types of representations students meet. It is perhaps not surprising if students cannot always 'guess what the teacher (or textbook author or researcher) is thinking, and what they intend by a particular type of image.

Annie here demonstrates the common notion that chemical bonding can be based upon 'sharing' electrons (i.e., covalent bonding). At this point in her course Annie would not be expected to appreciate polar bonds or the polarisation of ions, but her prior learning that covalent bonding could be understood as 'sharing' of electrons could potentially act as an impediment to learning that the ionic-covalent bonding distinction should be seen as a spectrum, a continuous dimension, not a dichotomy.

The way forces are understood in physics is that they are interactions between two bodies, and that the same magnitude of force acts of both bodies (i.e., Newton's third law). However, students commonly consider that a 'larger' body (e.g., more massive, more highly charged) exerts a large force on the smaller body. Students do not clearly distinguish the force from its effect, and so this alternative conception seems to draw upon intuitions based on actual experience of the world (i.e., a grounded learning impediment) where larger sources (larger fires, bigger loudspeakers, larger lamps) often seem to have larger effects.

[Read about Newton's third law, and student learning difficulties]

The Sun would pull more on the Earth…

Bert's understanding of the reciprocal nature of forces 


Keith S. Taber


Bert was a participant in the Understanding Science Project. A key idea in school physics is that forces occur in pairs, when two bodies exert an equal magnitude force upon each other (as required by Newton's third law). However, this seems counter intuitive to pupils, who may expect that a larger (more massive, or greater charge etc.) object would exert a greater force on a smaller body than vice versa. In physics a distinction is made between the forces (always equal) and their effects (which depend upon the force applied, and the mass of the object being acted upon). This distinction is not always made by students.

When in Y11, Bert offered an example of one of the common alternative conceptions found among students – that the larger body will exert more force:

What about the Earth going round the Sun, that's an orbit as well is it?

Yeah.

So why does it go round?

Why does it go round?

Yeah.

Erm because erm, well one is the gravity of it pulling and the other is, I'm not so sure what the other force is.

That's gravity of what?

The Sun.

So the gravity of the Sun pulling on the Earth?

Yeah.

Do you think the Earth pulls on the Sun?

Yeah, I guess but not strongly enough to move the Sun. Because if there's an object with a small amount of mass then it's not going to give off as much pull as something ten times bigger as it. So the Earth would pull more on the Sun, I mean the Sun would pull more on the Earth.

Whereas the physics perspective is that a force is an interaction between bodies, Bert talks as though a force is something that emanates from one body to another ("give off … pull"), a way of talking quite common among students applying their intuitive understanding of force.

Many students conflate the force acting on a body, and its effect (the acceleration produced) – so here the Sun and Earth are subject to the same force, but the earth is much less massive so will accelerate much more subject to that force than the Sun would. (The Sun's acceleration would actually depend on the net force acting on it considering the various bodies in orbit around it.)

Common experience tells us that in interactions between contrasting bodies (e.g., consider a fly on a windshield) the larger object has more effect, which may seem naturally to mean it applies more force (how much force can the tiny fly impart? – surely the car must apply more force to the fly?) So there is an intuition here, which can act as a grounded learning impediment to learning the physics formalism.




A reaction is just something that happens?

Keith S. Taber

The term 'reaction' is used in at least two different technical senses in school science: in studying forces as one of the components of a interaction between two bodies such that they each experience a force ('action-reaction'), and as a chemical change which leads to a transformation of matter leading to a new substance(s).

Lomash was a participant in the Understanding Science project. Y7 student 'Lomash' reported that he had been heating materials in a Bunsen flame in his science lessons: "We were burning … coal and copper and things like that, metals."

When he heated copper "It went black…because the flame was too hot, and – it just went black , like paper." The copper stayed black after being removed form the flame, and this was because "it's something else, it's a reaction."

Lomash was using the term 'reaction' in the context of a chemical change – the copper had changed to 'something else', suggesting that he had acquired something of the technical meaning of the term as it is used in chemistry. However 'reaction' is used with a much more general meaning in everyday life, and on further questioning it seemed Lomash has not appreciated the special meaning given to the word in chemistry:

I: So what's a reaction?

L: It's like, a reaction is something that happens.

I: Okay, so if I fell off this stool, would that be a reaction?

L: Yeah.

I: And if you laughed at me falling off the stool, would that be a reaction?

L: Yeah.

I: Oh I see. So that's just another name for something that happens is it?

L: Yeah.

Where students already have meanings for words they come across in school science, they are unlikely to spontanously appreciate how the word is used in a specialised, nuanced way in this particular context. Perhaps Lomash's teacher had emphasised that in heating the copper 'something else' was produced, making the observed change a 'reaction'. Certainly Lomash happily accepted this was a reaction, but apparently only in his existing vague everyday sense of the term. His existing linguistic association for the term 'reaction' appeared to act as an associative learning impediment.

Read about learners' alternative conceptions