Educational experiments – making the best of an unsuitable tool?

Can small-scale experimental investigations of teaching carried-out in a couple of arbitrary classrooms really tells us anything about how to teach well?


Keith S. Taber


Undertaking valid educational experiments involves (often, insurmountable) challenges, but perhaps this grid (shown larger below) might be useful for researchers who do want to do genuinely informative experimental studies into teaching?


Applying experimental method to educational questions is a bit like trying to use a precision jeweller's screwdriver to open a tin of paint: you may get the tin open eventually, but you will probably have deformed the tool in the process whilst making something of a mess of the job.


In recent years I seem to have developed something of a religious fervour about educational research studies of the kind that claim to be experimental evaluations of pedagogies, classroom practices, teaching resources, and the like. I think this all started when, having previously largely undertaken interpretive studies (for example, interviewing learners to find out what they knew and understood about science topics) I became part of a team looking to develop, and experimentally evaluate, classroom pedagogy (i.e., the epiSTEMe project).

As a former school science teacher, I had taught learners about the basis of experimental method (e.g., control of variables) and I had read quite a number of educational research studies based on 'experiments', so I was pretty familiar with the challenges of doing experiments in education. But being part of a project which looked to actually carry out such a study made a real impact on me in this regard. Well, that should not be surprising: there is a difference between watching the European Cup Final on the TV, and actually playing in the match, just as reading a review of a concert in the music press is not going to impact you as much as being on stage performing.

Let me be quite clear: the experimental method is of supreme value in the natural sciences; and, even if not all natural science proceeds that way, it deserves to be an important focus of the science curriculum. Even in science, the experimental strategy has its limitations. 1 But experiment is without doubt a precious and powerful tool in physics and chemistry that has helped us learn a great deal about the natural world. (In biology, too, but even here there are additional complications due to the variations within populations of individuals of a single 'kind'.)

But transferring experimental method from the laboratory to the classroom to test hypotheses about teaching is far from straightforward. Most of the published experimental studies drawing conclusions about matters such as effective pedagogy, need to be read with substantive and sometimes extensive provisos and caveats; and many of them are simply invalid – they are bad experiments (Taber, 2019). 2

The experiment is a tool that has been designed, and refined, to help us answer questions when:

  • we are dealing with non-sentient entities that are indifferent to outcomes;
  • we are investigating samples or specimens of natural kinds;
  • we can identify all the relevant variables;
  • we can measure the variables of interest;
  • we can control all other variables which could have an effect;

These points simply do not usually apply to classrooms and other learning contexts. 3 (This is clearly so, even if educational researchers often either do not appreciate these differences, or simply pretend they can ignore them.)

Applying experimental method to educational questions is a bit like trying to use a precision jeweller's screwdriver to open a tin of paint: you may get the tin open eventually, but you will probably have deformed the tool in the process whilst making something of a mess of the job.

The reason why experiments are to be preferred to interpretive ('qualitative') studies is that supposedly experiments can lead to definite conclusions (by testing hypotheses), whereas studies that rely on the interpretation of data (such as classroom observations, interviews, analysis of classroom talk, etc.) are at best suggestive. This would be a fair point when an experimental study genuinely met the control-of-variables requirements for being a true experiment – although often, even then, to draw generalisable conclusions that apply to a wide population one has to be confident one is working with a random or representatives sample, and use inferential statistics which can only offer a probabilistic conclusion.

My creed…researchers should prefer to undertake competent work

My proselytising about this issue, is based on having come to think that:

  • most educational experiments do not fully control relevant variables, so are invalid;
  • educational experiments are usually subject to expectancy effects that can influence outcomes;
  • many (perhaps most) educational experiments have too few independent units of analysis to allow the valid use of inferential statistics;
  • most large-scale educational experiments can not assure that samples are fully representative of populations, so strictly cannot be generalised;
  • many experiments are rhetorical studies that deliberately compare a condition (supposedly being tested but actually) assumed to be effective with a teaching condition known to fall short of good teaching practice;
  • an invalid experiment tells us nothing that we can rely upon;
  • a detailed case study of a learning context which offers rich description of teaching and learning potentially offers useful insights;
  • given a choice between undertaking a competent study of a kind that can offer useful insights, and undertaking a bad experiment which cannot provide valid conclusions, researchers should prefer to undertake competent work;
  • what makes work scientific is not the choice of methodology per se, but the adoption of a design that fits the research constraints and offers a genuine opportunity for useful learning.

However, experiments seem very popular in education, and often seem to be the methodology of choice for researchers into pedagogy in science education.

Read: Why do natural scientists tend to make poor social scientists?

This fondness of experiments will no doubt continue, so here are some thoughts on how to best draw useful implications from them.

A guide to using experiments to inform education

It seems there are two very important dimensions that can be used to characterise experimental research into teaching – relating to the scale and focus of the research.


Two dimensions used to characterise experimental studies of teaching


Scale of studies

A large-scale study has a large number 'units of analysis'. So, for example, if the research was testing out the value of using, say, augmented reality in teaching about predator-prey relationships, then in such a study there would need to be a large number of teaching-learning 'units' in the augmented learning condition and a similarly large number of teaching-learning 'units' in the comparison condition. What a unit actually is would vary from study to study. Here a unit might be a sequence of three lessons where a teacher teaches the topic to a class of 15-16 year-old learners (either with, or without, the use of augmented reality).

For units of analysis to be analysed statistically they need to be independent from each other – so different students learning together from the same teacher in the same classroom at the same time are clearly not learning independently of each other. (This seems obvious – but in many published studies this inconvenient fact is ignored as it is 'unhelpful' if researchers wish to use inferential statistics but are only working with a small number of classes. 4)

Read about units of analysis in research

So, a study which compared teaching and learning in two intact classes can usually only be considered to have one unit of analysis in each condition (making statistical tests completely irrelevant 5, thought this does not stop them often being applied anyway). There are a great many small scale studies in the literature where there are only one or a few units in each condition.

Focus of study

The other dimension shown in the figure concerns the focus of a study. By the focus, I mean whether the researchers are interested in teaching and learning in some specific local context, or want to find out about some general population.

Read about what is meant by population in research

Studies may be carried out in a very specific context (e.g., one school; one university programme) or across a wide range of contexts. That seems to simply relate to the scale of the study, just discussed. But by focus I mean whether the research question of interest concerns just a particular teaching and learning context (which may be quite appropriate when practitioner-researchers explore their own professional contexts, for exmample), or is meant to help us learn about a more general situation.


local focusgeneral focus
Why does school X get such outstanding science examination scores?Is there a relationship between teaching pedagogy employed and science examination results in English schools?
Will jig-saw learning be a productive way to teach my A level class about the properties of the transition elements?Is jig-saw learning an effective pedagogy for use in A level chemistry classes?
Some hypothetical research questions relating either to a specific teaching context, or a wider population. (n.b. The research literature includes a great many studies that claim to explore general research questions by collecting data in a single specific context.)

If that seems a subtle distinction between two quite similar dimensions then it is worth noting that the research literature contains a great many studies that take place in one context (small-scale studies) but which claim (implicitly or explicitly) to be of general relevance. So, many authors, peer reviewers, and editors clearly seem think one can generalise from such small scale studies.

Generalisation

Generalisation is the ability to draw general conclusions from specific instances. Natural science does this all the time. If this sample of table salt has the formula NaCl, then all samples of table salt do; if the resistance of this copper wire goes up when the wire is heated the same will be found with other specimens as well. This usually works well when dealing with things we think are 'natural kinds' – that is where all the examples (all samples of NaCl, all pure copper wires) have the same essence.

Read about generalisation in research

Education deals with teachers, classes, lessons, schools…social kinds that lack that kind of equivalence across examples. You can swap any two electrons in a structure and it will make absolutely no difference. Does any one think you can swap the teachers between two classes and safely assume it will not have an effect?

So, by focus I mean whether the point of the research is to find out about the research context in its own right (context-directed research) or to learn something that applies to a general category of phenomena (theory-directed research).

These two dimensions, then, lead to a model with four quadrants.

Large-scale research to learn about the general case

In the top-right quadrant is research which focuses on the general situation and is larger-scale. In principle 6 this type of research can address a question such as 'is this pedagogy (teaching resource, etc.) generally effective in this population', as long as

  • the samples are representative of the wider population of interest, and
  • those sampled are randomly assigned to conditions, and
  • the number of units supports statistical analysis.

The slight of hand employed in many studies is to select a convenience sample (two classes of thirteen years old students at my local school) yet to claim the research is about, and so offers conclusions about, a wider population (thirteen year learners).

Read about some examples of samples used to investigate populations


When an experiment tests a sample drawn at random from a wider population, then the findings of the experiment can be assumed to (probably) apply (on average) to the population. (Taber, 2019)

Even when a population is properly sampled, it is important not to assume that something which has been found to be generally effective in a population will be effective throughout the population. Schools, classes, courses, learners, topics, etc. vary. If it has been found that, say, teaching the reactivity series through enquiry generally works in the population of English classes of 13-14 year students, then a teacher of an English class of 13-14 year students might sensibly think this is an approach to adopt, but cannot assume it will be effective in her classroom, with a particular group of students.

To implement something that has been shown to generally work might be considered research-based teaching, as long as the approach is dropped or modified if indications are it is not proving effective in this particular context. That is, there is nothing (please note, UK Department for Education, and Ofsted) 'research-based' about continuing with a recommended approach in the face of direct empirical evidence that it is not working in your classroom.

Large-scale research to learn about the range of effectiveness

However, even large-scale studies where there are genuinely sufficient units of analysis for statistical analysis may not logically support the kinds of generalisation in the top-right quadrant. For that, researchers needs either a random sampling of the full population (seldom viable given people and institutions must have a choice to participate or not 7), or a sample which is known to be representative of the population in terms of the relevant characteristics – which means knowing a lot about

  • (i) the population,
  • (ii) the sample, and
  • (ii) which variables might be relevant!

Imagine you wanted to undertake a survey of physics teachers in some national context, and you knew you could not reach all that population so you needed to survey a sample. How could you possibly know that the teachers in your sample were representative of the wider population on whatever variables might potentially be pertinent to the survey (level of qualification?; years of experience?; degree subject?; type of school/college taught in?; gender?…)

But perhaps a large scale study that attracts a diverse enough sample may still be very useful if it collects sufficient data about the individual units of analysis, and so can begin to look at patterns in how specific local conditions relate to teaching effectiveness. That is, even if the sample cannot be considered representative enough for statistical generalisation to the population, such a study might be a be to offer some insights into whether an approach seems to work well in mixed-ability classes, or top sets, or girls' schools, or in areas of high social deprivation, or…

In practice, there are very few experimental research studies which are large-scale, in the sense of having enough different teachers/classes as units of analysis to sit in either of these quadrants of the chart. Educational research is rarely funded at a level that makes this possible. Most researchers are constrained by the available resources to only work with a small number of accessible classes or schools.

So, what use are such studies for producing generalisable results?

Small-scale research to incrementally extend the range of effectiveness

A single small-scale study can contribute to a research programme to explore the range of application of an innovation as if it was part of a large-scale study with a diverse sample. But this means such studies need to be explicitly conceptualised and planned as part of such a programme.

At the moment it is common for research papers to say something like

"…lots of research studies, from all over the place, report that asking students to

(i) first copy science texts omitting all the vowels, and then

(ii) re-constituting them in full by working from the reduced text, by writing it out adding vowels that produce viable words and sentences,

is an effective way of supporting the learning of science concepts; but no one has yet reported testing this pedagogic method when twelve year old students are studying the topic of acids in South Cambridgeshire in a teaching laboratory with moveable stools and West-facing windows.

In this ground-breaking study, we report an experiment to see if this constructivist, active-learning, teaching approach leads to greater science learning among twelve year old students studying the topic of acids in South Cambridgeshire in a teaching laboratory with moveable stools and West-facing windows…"

Over time, the research literature becomes populated with studies of enquiry-based science education, jig-saw learning, use of virtual reality, etc., etc., and these tend to refer to a range of national contexts, variously aged students, diverse science topics, etc., this all tends to be piecemeal. A coordinated programme of research could lead to researchers both (a) giving rich description of the context used, and (b) selecting contexts strategically to build up a picture across ranges of contexts,

"When there is a series of studies testing the same innovation, it is most useful if collectively they sample in a way that offers maximum information about the potential range of effectiveness of the innovation.There are clearly many factors that may be relevant. It may be useful for replication studies of effective innovations to take place with groups of different socio-economic status, or in different countries with different curriculum contexts, or indeed in countries with different cultural norms (and perhaps very different class sizes; different access to laboratory facilities) and languages of instruction …. It may be useful to test the range of effectiveness of some innovations in terms of the ages of students, or across a range of quite different science topics. Such decisions should be based on theoretical considerations.

Given the large number of potentially relevant variables, there will be a great many combinations of possible sets of replication conditions. A large number of replications giving similar results within a small region of this 'phase space' means each new study adds little to the field. If all existing studies report positive outcomes, then it is most useful to select new samples that are as different as possible from those already tested. …

When existing studies suggest the innovation is effective in some contexts but not others, then the characteristics of samples/context of published studies can be used to guide the selection of new samples/contexts (perhaps those judged as offering intermediate cases) that can help illuminate the boundaries of the range of effectiveness of the innovation."

Taber, 2019

Not that the research programme would be co-ordinated by a central agency or authority, but by each contributing researcher/research team (i) taking into account the 'state of play' at the start of their research; (ii) making strategic decisions accordingly when selecting contexts for their own work; (iii) reporting the context in enough detail to allow later researchers to see how that study fits into the ongoing programme.

This has to be a more scientific approach than simply picking a convenient context where researchers expect something to work well; undertake a small-scale local experiment (perhaps setting up a substandard control condition to be sure of a positive outcome); and then report along the lines "this widely demonstrated effective pedagogy works here too", or, if it does not, perhaps putting the study aside without publication. As the philosopher of science, Karl Popper, reminded us, science proceeds through the testing of bold conjectures: an 'experiment' where you already know the outcome is actually a demonstration. Demonstrations are useful in teaching, but do not contribute to research. What can contribute is an experiment in a context where there is reason to be unsure if an innovation will be an improvement or not, and where the comparison reflects good teaching practice to offer a meaningful test.

Small-scale research to inform local practice

Now, I would be the first to admit that I am not optimistic that such an approach will be developed by researchers; and even if it is, it will take time for useful patterns to arise that offer genuine insights into the range of convenience of different pedagogies.

Does this mean that small-scale studies in single context are really a waste of research resource and an unmerited inconvenient for those working in such contexts?

Well, I have time for studies in my final (bottom left) quadrant. Given that schools and classrooms and teachers and classes all vary considerably, and that what works well in a highly selective boys-only fee-paying school with a class size of 16 may not be as effective in a co-educational class of 32 mixed ability students in an under-resourced school in an area of social deprivation – and vice versa, of course!, there is often value in testing out ideas (even recommended 'research-based' ones) in specific contexts to inform practice in that context. These are likely to be genuine experiments, as the investigators are really motived to find out what can improve practice in that context.

Often such experiments will not get published,

  • perhaps because the researchers are teachers with higher priorities than writing for publication;
  • perhaps because it is assumed such local studies are not generalisable (but they could sometimes be moved into the previous category if suitably conceptualised and reported);
  • perhaps because the investigators have not sought permissions for publication (part of the ethics of research), usually not necessary for teachers seeking innovations to improve practice as part of their professional work;
  • perhaps because it has been decided inappropriate to set up control conditions which are not expected to be of benefit to those being asked to participate;
  • but also because when trying out something new in a classroom, one needs to be open to make ad hoc modifications to, or even abandon, an innovation if it seems to be having a deleterious effect.

Evaluation of effectiveness here usually comes down to professional judgement (rather than statistical testing – which assumes a large random sample of a population – being used to invalidly generalise small, non-random, local results to that population) which might, in part, rely on the researcher's close (and partially tacit) familiarity with the research context.

I am here describing 'action research', which is highly useful for informing local practice, but which is not ideally suited for formal reporting in academic journals.

Read about action research

So, I suspect there may be an irony here.

There may be a great many small-scale experiments undertaken in schools and colleges which inform good teaching practice in their contexts, without ever being widely reported; whilst there are a great many similar scale, often 'forced' experiments, carried out by visiting researchers with little personal stake in the research context, reporting the general effectiveness of teaching approaches, based on misuse of statistics. I wonder which approach best reflects the true spirit of science?

Source cited:


Notes:

1 For example:

Even in the natural sciences, we can never be absolutely sure that we have controlled all relevant variables (after all, if we already knew for sure which variables were relevant, we would not need to do the research). But usually existing theory gives us a pretty good idea what we need to control.

Experiments are never a simple test of the specified hypothesis, as the experiment is likely to depends upon the theory of instrumentation and the quality of instruments. Consider an extreme case such as the discovery of the Higgs boson at CERN: the conclusions relied on complex theory that informed the design of the apparatus, and very challenging precision engineering, as well as complex mathematical models for interpreting data, and corresponding computer software specifically programmed to carry out that analysis.

The experimental results are a test of a hypothesis (e.g., that a certain particle would be found at events below some calculated energy level) subject to the provisos that

  • the theory of the the instrument and its design is correct; and
  • the materials of the apparatus (an apparatus as complex and extensive as a small city) have no serious flaws; and
  • the construction of the instrumentation precisely matches the specifications;
  • and the modelling of how the detectors will function (including their decay in performance over time) is accurate; and
  • the analytical techniques designed to interpret the signals are valid;
  • the programming of the computers carries out the analysis as intended.

It almost requires an act of faith to have confidence in all this (and I am confident there is no one scientist anywhere in the world who has a good enough understanding and familiarity will all these aspects of the experiment to be able to give assurances on all these areas!)


CREST {Critical Reading of Empirical Studies} evaluation form: when you read a research study, do you consider the cumulative effects of doubts you may have about different aspects of the work?

I would hope at least that as professional scientists and engineers they might be a little more aware of this complex chain of argumentation needed to support robust conclusions than many students – for students often seem to be overconfident in the overall value of research conclusions given any doubts they may have about aspects of the work reported.

Read about the Critical Reading of Empirical Studies Tool


Galileo Galilei was one of the first people to apply the telescope to study the night sky

Galileo Galilei was one of the first people to apply the telescope to study the night sky (image by Dorothe from Pixabay)


A historical example is Galileo's observations of astronomical phenomena such as Jovian moons (he spotted the four largest: Io, Europa, Ganymede and Callisto) and the irregular surface of the moon. Some of his contemporaries rejected these findings on the basis that they were made using an apparatus, the newly fanged telescope, that they did not trust. Whilst this is now widely seen as being arrogant and/or ignorant, arguably if you did not understand how a telescope could magnify, and you did not trust the quality of the lenses not to produce distortions, then it was quite reasonable to be sceptical of findings which were counter to a theory of the 'heavens' that had been generally accepted for many centuries.


2 I have discussed a number of examples on this site. For example:

Falsifying research conclusions: You do not need to falsify your results if you are happy to draw conclusions contrary to the outcome of your data analysis.

Why ask teachers to 'transmit' knowledge…if you believe that "knowledge is constructed in the minds of students"?

Shock result: more study time leads to higher test scores (But 'all other things' are seldom equal)

Experimental pot calls the research kettle black: Do not enquire as I do, enquire as I tell you

Lack of control in educational research: Getting that sinking feeling on reading published studies


3 For a detailed discussion of these and other challenges of doing educational experiments, see Taber, 2019.


4 Consider these two situations.

A researcher wants to find out if a new textbook 'Science for the modern age' leads to more learning among the Grade 10 students she teaches than the traditional book 'Principles of the natural world'. Imagine there are fifty grade 10 students divided already into two classes. The teacher flips a coin and randomly assigns one of the classes to the innovative book, the other being assigned by default the traditional book. We will assume she has a suitable test to assess each students' learning at the end of the experiment.

The teacher teaches the two classes the same curriculum by the same scheme of work. She presents a mini-lecture to a class, then sets them some questions to discuss using the text book. At the end of the (three part!) lesson, she leads a class disucsison drawing on students' suggested answers.

Being a science teacher, who believes in replication, she decides to repeat the exercise the following year. Unfortunately there is a pandemic, and all the students are sent into lock-down at home. So, the teacher assigns the fifty students by lot into two groups, and emails one group the traditional book, and the other the innovative text. She teaches all the students on line as one cohort: each lesson giving them a mini-lecture, then setting them some reading from their (assigned) book, and a set of questions to work through using the text, asking them to upload their individual answers for her to see.

With regard to experimental method, in the first cohort she has only two independent units of analysis – so she may note that the average outcome scores are higher in one group, but cannot read too much into that. However, in the second year, the fifty students can be considered to be learning independently, and as they have been randomly assigned to conditions, she can treat the assessment scores as being from 25 units of analysis in each condition (and so may sensibly apply statistics to see if there is a statistically significant different in outcomes).


5 Inferential statistical tests are usually used to see if the difference in outcomes across conditions is 'significant'. Perhaps the average score in a class with an innovation is 5.6, compared with an average score in the control class of 5.1. The average score is higher in the experimental condition, but is the difference enough to matter?

Well, actually, if the question is whether the difference is big enough to likely to make a difference in practice then researchers should calculate the 'effect size' which will suggest whether the difference found should be considered small, moderate or large. This should ideally be calculated regardless of whether inferential statistics are being used or not.

Inferential statistical tests are often used to see if the result is generalisable to the wider population – but, as suggested above, this is strictly only valid if the population of interest have been randomly sampled – which virtually never happens in educational studies as it is usually not feasible.

Often researchers will still do the calculation, based on the sets of outcome scores in the two conditions, to see if they can claim a statistically significant difference – but the test will only suggest how likely or unlikely the difference between the outcomes is, if the units of analysis have been randomly assigned to the conditions. So, if there are 50 learners each randomly assigned to experimental or control condition this makes sense. That is sometimes the case, but nearly always the researchers work with existing classes and do not have the option of randomly mixing the students up. [See the example in the previous note 4.] In such a situation, the stats. are not informative. (That does not stop them often being reported in published accounts as if they are useful.)


6 That is, if it possible to address such complications as participant expectations, and equitable teacher-familiarity with the different conditions they are assigned to (Taber, 2019).

Read about expectancy effects


7 A usual ethical expectation is that participants voluntarily (without duress) offer informed consent to participate.

Read about voluntary informed consent


Are physics teachers unaware of the applications of physics to other sciences?

Confounding conceptual integration


Keith S. Taber


Tuysuz and colleagues seem to have found chemistry and physics teachers have a different attitude to the importance of integrating concepts from across the subjects.


Conceptual integration?

Conceptual integration is very important in science. That is, science doesn't consist of a large set of unrelated facts, but rather the ability to subsume a great many phenomena under a limited number of ideas is valued. James Clerk Maxwell is widely remembered for showing that electricity, magnetism and radiation such as light (that is, what we now call electromagnetic radiation) were intimately related, and today theoretical physicists seek a 'Grand Unified Theory' that would account of all the forces in nature. Equally, the apparent incompatibility of the two major scientific ideas of the early twentieth century – general relativity and quantum mechanics – is widely recognised as suggesting a fundamental problem in our current best understanding of the world.

So, conceptual integration can be seen as a scientific value: something scientists expect to find in nature 1 and something they seek through their research.

Learners may not appreciate this. When I was teaching physics and chemistry I was quite surprised to see how little some students who studied both subjects would notice, or indeed expect, ideas taught in one course to link to those in another (e.g., Taber, 1998).

A demarcation criterion?

I have even, only partially tongue-in-cheek, suggested that a criterion for identifying an authentic science education would be that it emphasises the connections within science, both within and across disciplines (Taber, 2006). 2

Sadly, there has been limited attention to this theme within science education, and very little research. I was therefore pleased to find a references to a Turkish study on the topic. 3

A study with teachers-in-preparation

Tuysuz, Bektas, Geban, Ozturk and Yalvac (2016) undertook an interview study with students preparing for school science teaching. One of their findings was:

"Generally speaking, while the pre-service chemistry teachers think that physics concepts should be used in the chemistry lessons, the pre-service physics teachers believe that these two subjects' concepts generally are not related to each other."

Tuysuz, Bektas, Geban, Ozturk & Yalvac, 2016

Reading this in isolation might seem to suggest that those preparing for chemistry teaching (and therefore, likely, chemistry teachers) saw more value in emphasising conceptual integration in teaching than those preparing for physics teaching (and therefore, likely, physics teachers).

Why might physics teachers give less value to conceptual integration?

It is easy to try to think of possible reasons for this:

  • Conjecture 1: chemistry teachers are aware of how chemistry draws upon physical concepts, and so are more minded to emphasise links between the subjects than physics teachers. 4
  • Conjecture 2: physicists, and so physics teachers, are more arrogant about their discipline than other scientists (cf. "All science is either physics or stamp collecting" – as Ernest Rutherford supposedly claimed!)
  • Conjecture 3: chemists are more likely to have also studied other science disciplines at a high level (and so are well placed to appreciate conceptual integration across sciences), whereas physics specialists are more likely to have mainly focussed on mathematics as a subsidiary subject rather than other sciences.

I imagine other possibilities will have occurred to readers, but before spending too much time on explaining Tuysuz and colleagues' findings, it is worth considering how they came to this conclusion.

Not an experiment

Tuysuz and colleagues do not claim to have undertaken an experimental study, but rather claim their work is phenomenology. It did not use a large, randomly selected (and, so, likely to be representative) sample of populations of pre-service science teachers (as would be needed for an experiment), but rather used a convenience sample of six students who were accessible and willing to help: three pre-service physics teachers and three pre-service chemistry teachers.

Read about sampling populations in research

It is not unusual for educational studies to be based on very small samples, as this allows for in-depth work. If you want to know what a person really thinks about a topic, you need to establish rapport and trust with them, and encourage them to talk in some detail – not just offer a rating to some item on a questionnaire. Small samples are perfectly proper in such studies.

What is questionable, is whether it is really meaningful to tease out differences between two identified groups (e.g., pre-service chemistry teachers; pre-service physics teachers) based on such samples. We cannot generalise without representative samples, so, when Tuysuz, Bektas, Geban, Ozturk and Yalvac write "Generally speaking…", their study does not really support such generalisation. The authors are only reporting what they found in their particular sample, and so the reader needs to contextualise their claim in terms of further details of the study, i.e., the reader needs to read the claim as

"Generally speaking, while the three pre-service chemistry teachers who volunteered to talk to us from this one teacher preparation programme think that physics concepts should be used in the chemistry lessons, the three pre- service physics teachers who volunteered to talk to us from this one programme believe that these two subjects' concepts generally are not related to each other."

Put in those terms, this is a very localised and limited kind of 'generally'.

This does not undermine the potential value of the study. That any future school science teachers might think that "these two subjects' concepts generally are not related to each other" is a worrying finding.

A confounded design

Another reason why it is important not to read Tuysuz's study as suggesting a general difference between teacher candidates in physics and chemistry, is because of a major confound in the study design. If the research had been intended as an experiment, where the investigators have to control variables so that there is only one differences between the different conditions, this would have been a critical flaw in the design.

The pre-service physics teachers and the pre-service chemistry teachers were taking parallel, but distinct, courses during the study. The authors report that the teaching approaches were different in the two subject areas. In particular, the paper reports that in the case of the pre-service chemistry teachers conceptual integration was explicitly discussed. The chemists – but not the physicists – were taught that conceptual integration was important. When interviewed, the chemists (who had been taught about conceptual integration) suggested conceptual integration was more important than the physicists (who had not been taught about conceptual integration) did!

  • This might have been because of their different subject specialisms;
  • It might have been because of the differences in the practice teaching courses taken by the two groups, such as perhaps the specific engagement of the chemists (but not the physicists) with ideas about conceptual integration during their course;
  • It might have been due to an interaction between these two factors (that is, perhaps neither difference by itself would have led to this finding);
  • And it might have simply reflected the ideas and past experiences of the particular three students in the chemists group, and the particular three students in the physicists group.

Tuysuz and colleagues found that, 'generally speaking', three students (who were chemistry specialists and had been taught about conceptual integration) had a different attitude to the importance of conceptual integration in teaching science to three other students (who were physics specialists and had not been taught about conceptual integration)

Read about confounding variables in research

The researchers might have just as readily reported that:

"Generally speaking, while the pre-service science teachers who had discussed conceptual integration in their course think that physics concepts should be used in the chemistry lessons, the pre-service science teachers who had not been taught about this believe that these two subjects' concepts generally are not related to each other."

Of course, such a conclusion would be equally misleading as both factors (subject specialism and presence/absence of explicit teaching input) vary simultaneously between the two groups of students, so it is inappropriate to suggest a general difference due to either factor in isolation.


Work cited:

Notes

1 Although science is meant to be based on objective observations of the natural world, scientists approach their work with certain fundamental assumptions about nature. These might include beliefs that

  • an objective account of nature is in principle possible (that different observers can observe the same things), and
  • that there is at some level a consistent nature to the universe (there are fixed laws which continue to apply over time)

assumptions that are needed for science to be meaningful. As these things are assumed prior to undertaking any scientific observations they can be considered metaphysical commitments (Taber, 2013).

[Download 'Conceptual frameworks, metaphysical commitments and worldviews']

Another metaphysical commitment generally shared by scientists as a common worldview is that the complex and diverse phenomena we experience can be explained by a limited number of underlying principles and laws. From this perspective, progress in science leads to increased integration between topics.


2 The term 'demarcation criterion' is often used in relation to deciding what should be considered a science (e.g., usually, astronomy is considered a science, and so is biochemistry; but not astrology or psychoanalysis). A famous example of a demarcation criterion, due to Karl Popper, is that a scientific conjecture is one which is in principle capable of being refuted.

Astronomers can use their theories and data to predict the date of the next solar eclipse, for example. If the eclipse did not occur when predicted, that would be considered a falsification.

By contrast, if a psychotherapist suggested a person had personality issues due to repressed, unresolved, feelings about their parents, then this cannot be refuted. (The client may claim having positive and untroubled relationships with the parents, but the therapist does not consider this a refutation as the feelings have been repressed, so they are not consciously available to the client. The problem can only be detected indirectly by signs which the therapist knows how to interpret.).


3 I became aware of the study discussed here when reading the work in progress of Louise Vong, who has been doing some research in this important topic.


4 Physics concepts are widely applied in chemistry, but not vice versa. So, this is suggesting that chemistry teachers have more need to refer to physics in teaching their subject than the converse.

However, we could also have looked to explain the opposite finding (had it been reported that pre-service physics teachers paid more attention to conceptual integration than pre-service chemistry teachers) by suggesting physics teachers have more reason to refer to chemistry topics when discussing examples of applications of concepts being taught, than chemistry teachers have to refer to physics topics.


Falsifying research conclusions

You do not need to falsify your results if you are happy to draw conclusions contrary to the outcome of your data analysis.


Keith S. Taber


Li and colleagues claim that their innovation is successful in improving teaching quality and student learning: but their own data analaysis does not support this.

I recently read a research study to evaluate a teaching innovation where the authors

  • presented their results,
  • reported the statistical test they had used to analyse their results,
  • acknowledged that the outcome of their experiment was negative (not statistically significant), then
  • stated their findings as having obtained a positive outcome, and
  • concluded their paper by arguing they had demonstrated their teaching innovation was effective.

Li, Ouyang, Xu and Zhang's (2022) paper in the Journal of Chemical Education contravenes the scientific norm that your conclusions should be consistent with the outcome of your data analysis.
(Magnified portions of this scheme are presented below)

And this was not in a paper in one of those predatory journals that I have criticised so often here – this was a study in a well regarded journal published by a learned scientific society!

The legal analogy

I have suggested (Taber, 2013) that writing up research can be understood in terms of a number of metaphoric roles: researchers need to

  • tell the story of their research;
  • teach readers about the unfamiliar aspects of their work;
  • make a case for the knowledge claims they make.

Three metaphors for writing-up research

All three aspects are important in making a paper accessible and useful to readers, but arguably the most important aspect is the 'legal' analogy: a research paper is an argument to make a claim for new public knowledge. A paper that does not make its case does not add anything of substance to the literature.

Imagine a criminal case where the prosecution seeks to make its argument at a pre-trial hearing:

"The police found fingerprints and D.N.A. evidence at the scene, which they believe were from the accused."

"Were these traces sent for forensic analysis?"

"Of course. The laboratory undertook the standard tests to identify who left these traces."

"And what did these analyses reveal?"

"Well according to the current standards that are widely accepted in the field, the laboratory was unable to find a definite match between the material collected at the scene, and fingerprints and a D.N.A. sample provided by the defendant."

"And what did the police conclude from these findings?"

"The police concluded that the fingerprints and D.N.A. evidence show that the accused was at the scene of the crime."

It seems unlikely that such a scenario has ever played out, at least in any democratic country where there is an independent judiciary, as the prosecution would be open to ridicule and it is quite likely the judge would have some comments about wasting court time. What would seem even more remarkable, however, would be if the judge decided on the basis of this presentation that there was a prima facie case to answer that should proceed to a full jury trial.

Yet in educational research, it seems parallel logic can be persuasive enough to get a paper published in a good peer-reviewed journal.

Testing an educational innovation

The paper was entitled 'Implementation of the Student-Centered Team-Based Learning Teaching Method in a Medicinal Chemistry Curriculum' (Li, Ouyang, Xu & Zhang, 2022), and it was published in the Journal of Chemical Education. 'J.Chem.Ed.' is a well-established, highly respected periodical that takes peer review seriously. It is published by a learned scientific society – the American Chemical Society.

That a study published in such a prestige outlet should have such a serious and obvious flaw is worrying. Of course, no matter how good editorial and peer review standards are, it is inevitable that sometimes work with serious flaws will get published, and it is easy to pick out the odd problematic paper and ignore the vast majority of quality work being published. But, I did think this was a blatant problem that should have been spotted.

Indeed, because I have a lot of respect for the Journal of Chemical Education I decided not to blog about it ("but that is what you are doing…?"; yes, but stick with me) and to take time to write a detailed letter to the journal setting out the problem in the hope this would be acknowledged and the published paper would not stand unchallenged in the literature. The journal declined to publish my letter although the referees seemed to generally accept the critique. This suggests to me that this was not just an isolated case of something slipping through – but a failure to appreciate the need for robust scientific standards in publishing educational research.

Read the letter submitted to the Journal of Chemical Education

A flawed paper does not imply worthless research

I am certainly not suggesting that there is no merit in Li, Ouyang, Xu and Zhang's work. Nor am I arguing that their work was not worth publishing in the journal. My argument is that Li and colleague's paper draws an invalid conclusion, and makes misleading statements inconsistent with the research data presented, and that it should not have been published in this form. These problems are pretty obvious, and should (I felt) have been spotted in peer review. The authors should have been asked to address these issues, and follow normal scientific standards and norms such that their conclusions follow from, rather than contradict, their results.

That is my take. Please read my reasoning below (and the original study if you have access to J.Chem.Ed.) and make up your own mind.

Li, Ouyang, Xu and Zhang report an innovation in a university course. They consider this to have been a successful innovation, and it may well have great merits. The core problem is that Li and colleagues claim that their innovation is successful in improving teaching quality and student learning: when their own data analysis does not support this.

The evidence for a successful innovation

There is much material in the paper on the nature of the innovation, and there is evidence about student responses to it. Here, I am only concerned with the failure of the paper to offer a logical chain of argument to support their knowledge claim that the teaching innovation improved student achievement.

There are (to my reading – please judge for yourself if you can access the paper) some slight ambiguities in some parts of the description of the collection and analysis of achievement data (see note 5 below), but the key indicator relied on by Li, Ouyang, Xu and Zhang is the average score achieved by students in four teaching groups, three of which experienced the teaching innovation (these are denoted collectively as the 'the experimental group') and one group which did not (denoted as 'the control group', although there is no control of variables in the study 1). Each class comprised of 40 students.

The study is not published open access, so I cannot reproduce the copyright figures from the paper here, but below I have drawn a graph of these key data:


Key results from Li et al, 2022: this data was the basis for claiming an effective teaching innovation.

Loading poll ...

It is on the basis of this set of results that Li and colleagues claim that "the average score showed a constant upward trend, and a steady increase was found". Surely, anyone interrogating these data might have pause to wonder if that is the most authentic description of the pattern of scores year on year.

Does anyone teaching in a university really think that assessment methods are good enough to produce average class scores that are meaningful to 3 or 4 significant figures. To a more reasonable level of precision, nearest %age point (which is presumably what these numbers are – that is not made explicit), the results were:


CohortAverage class score
201780
201880
201980
202080
Average class scores (2 s.f.) year on year

When presented to a realistic level of precision, the obvious pattern is…no substantive change year on year!

A truncated graph

In their paper, Li and colleagues do present a graph to compare the average results in 2017 with (not 2018, but) 2019 and 2020, somewhat similar to the one I have reproduced here which should have made it very clear how little the scores varied between cohorts. However, Li and colleagues did not include on their axis the full range of possible scores, but rather only included a small portion of the full range – from 79.4 to 80.4.

This is a perfectly valid procedure often used in science, and it is quite explicitly done (the x-axis is clearly marked), but it does give a visual impression of a large spread of scores which could be quite misleading. In effect, their Figure 4b includes just a slither of my graph above, as shown below. If one takes the portion of the image below that is not greyed out, and stretches it to cover the full extent of the x axis of a graph, that is what is presented in the published account.


In the paper in J.Chem.Ed., Li and colleagues (2022) truncate the scale on their average score axis to expand 1% of the full range (approximated above in the area not shaded over) into a whole graph as their Figure 4b. This gives a visual impression of widely varying scores (to anyone who does not read the axis labels).

Compare images: you can use the 'slider' to change how much of each of the two images is shown.

What might have caused those small variations?

If anyone does think that differences of a few tenths of a percent in average class scores are notable, and that this demonstrates increasing student achievement, then we might ask what causes this?

Li and colleagues seem to be convinced that the change in teaching approach caused the (very modest) increase in scores year on year. That would be possible. (Indeed, Li et al seem to be arguing that the very, very modest shift from 2017 to subsequent years was due to the change of teaching approach; but the not-quite-so-modest shifts from 2018 to 2019 to 2020 are due to developing teacher competence!) However, drawing that conclusion requires making a ceteris paribus assumption: that all other things are equal. That is, that any other relevant variables have been controlled.

Read about confounding variables

Another possibility however is simply that each year the teaching team are more familiar with the science, and have had more experience teaching it to groups at this level. That is quite reasonable and could explain why there might be a modest increase in student outcomes on a course year on year.

Non-equivalent groups of students?

However, a big assumption here is that each of the year groups can be considered to be intrinsically the same at the start of the course (and to have equivalent relevant experiences outside the focal course during the programme). Often in quasi-experimental studies (where randomisation to conditions is not possible 1) a pre-test is used to check for equivalence prior to the innovation: after all, if students are starting from different levels of background knowledge and understanding then they are likely to score differently at the end of a course – and no further explanation of any measured differences in course achievement need be sought.

Read about testing for initial equivalence

In experiments, you randomly assign the units of analysis (e.g., students) to the conditions, which gives some basis for at least comparing any differences in outcomes with the variations likely by chance. But this was not a true experiment as there was no randomisation – the comparisons are between successive year groups.

In Li and colleagues' study, the 40 students taking the class in 2017 are implicitly assumed equivalent to the 40 students taking the class in each of the years 20818-2020: but no evidence is presented to support this assumption. 3

Yet anyone who has taught the same course over a period of time knows that even when a course is unchanged and the entrance requirements stable, there are naturally variations from one year to the next. That is one of the challenges of educational research (Taber, 2019): you never can "take two identical students…two identical classes…two identical teachers…two identical institutions".

Novelty or expectation effects?

We would also have to ignore any difference introduced by the general effect of there being an innovation beyond the nature of the specific innovation (Taber, 2019). That is, students might be more attentive and motivated simply because this course does things differently to their other current courses and past courses. (Perhaps not, but it cannot be ruled out.)

The researchers are likely enthusiastic for, and had high expectations for, the innovation (so high that it seems to have biased their interpretation of the data and blinded them to the obvious problems with their argument) and much research shows that high expectation, in its own right, often influences outcomes.

Read about expectancy effects in studies

Equivalent examination questions and marking?

We also have to assume the assessment was entirely equivalent across the four years. 4 The scores were based on aggregating a number of components:

"The course score was calculated on a percentage basis: attendance (5%), preclass preview (10%), in-class group presentation (10%), postclass mind map (5%), unit tests (10%), midterm examination (20%), and final examination (40%)."

Li, et al, 2022, p.1858

This raises questions about the marking and the examinations:

  • Are the same test and examination questions used each year (that is not usually the case as students can acquire copies of past papers)?
  • If not, how were these instruments standardised to ensure they were not more difficult in some years than others?
  • How reliable is the marking? (Reliable meaning the same scores/mark would be assigned to the same work on a different occasion.)

These various issues do not appear to have been considered.

Change of assessment methodology?

The description above of how the students' course scores were calculated raises another problem. The 2017 cohort were taught by "direct instruction". This is not explained as the authors presumably think we all know exactly what that is : I imagine lectures. By comparison, in the innovation (2018-2020 cohorts):

"The preclass stage of the SCTBL strategy is the distribution of the group preview task; each student in the group is responsible for a task point. The completion of the preview task stimulates students' learning motivation. The in-class stage is a team presentation (typically PowerPoint (PPT)), which promotes students' understanding of knowledge points. The postclass stage is the assignment of team homework and consolidation of knowledge points using a mind map. Mind maps allow an orderly sorting and summarization of the knowledge gathered in the class; they are conducive to connecting knowledge systems and play an important role in consolidating class knowledge."

Li, et al, 2022, p.1856, emphasis added.

Now the assessment of the preview tasks, the in-class group presentations, and the mind maps all contributed to the overall student scores (10%, 10%, 5% respectively). But these are parts of the innovative teaching strategy – they are (presumably) not part of 'direct instruction'. So, the description of how the student class scores were derived only applies to 2018-2020, and the methodology used in 2017 must have been different. (This is not discussed in the paper.) 5

A quarter of the score for the 'experimental' groups came from assessment components that could not have been part of the assessment regime applied to the 2017 cohort. At the very least, the tests and examinations must have been more heavily weighed into the 'control' group students' overall scores. This makes it very unlikely the scores can be meaningfully directly compared from 2017 to subsequent years: if the authors think otherwise they should have presented persuasive evidence of equivalence.


Li and colleagues want to convince us that variations in average course scores can be assumed to be due to a change in teaching approach – even though there are other conflating variables.

So, groups that we cannot assume are equivalent are assessed in ways that we cannot assume to be equivalent and obtain nearly identical average levels of achievement. Despite that, Li and colleagues want to persuade us that the very modest differences in average scores between the 'control' and 'experimental' groups (which is actually larger between different 'experimental group' cohorts than between the 'control' group and the successive 'experimental' cohort) are large enough to be significant and demonstrate their teaching innovation improves student achievement.

Statistical inference

So, even if we thought shifts of less than a 1% average in class achievement were telling, there are no good reasons to assume they are down to the innovation rather than some other factor. But Li and colleagues use statistical tests to tell them whether differences between the 'control' and 'experimental' conditions are significant. They find – just what anyone looking at the graph above would expect – "there is no significant difference in average score" (p.1860).

The scientific convention in using such tests is that the choice of test, and confidence level (e.g., a probability of p<0.05 to be taken as significant) is determined in advance, and the researchers accept the outcomes of the analysis. There is a kind of contract involved – a decision to use a statistical test (chosen in advance as being a valid way of deciding the outcome of an experiment) is seen as a commitment to accept its outcomes. 2 This is a form of honesty in scientific work. Just as it is not acceptable to fabricate data, nor is is acceptable to ignore experimental outcomes when drawing conclusions from research.

Special pleading is allowed in mitigation (e.g., "although our results were non-significant, we think this was due to the small samples sizes, and suggest that further research should be undertaken with large groups {and we are happy to do this if someone gives us a grant}"), but the scientist is not allowed to simply set aside the results of the analysis.


Li and colleagues found no significant difference between the two conditions, yet that did not stop them claiming, and the Journal of Chemical Education publishing, a conclusion that the new teaching approach improved student achievement!

Yet setting aside the results of their analysis is what Li and colleagues do. They carry out an analysis, then simply ignore the findings, and conclude the opposite:

"To conclude, our results suggest that the SCTBL method is an effective way to improve teaching quality and student achievement."

Li, et al, 2022, p.1861

It was this complete disregard of scientific values, rather than the more common failure to appreciate that they were not comparing like with like, that I found really shocking – and led to me writing a formal letter to the journal. Not so much surprise that researchers might do this (I know how intoxicating research can be, and how easy it is to become convinced in one's ideas) but that the peer reviewers for the Journal of Chemical Education did not make the firmest recommendation to the editor that this manuscript could NOT be published until it was corrected so that the conclusion was consistent with the findings.

This seems a very stark failure of peer review, and allows a paper to appear in the literature that presents a conclusion totally unsupported by the evidence available and the analysis undertaken. This also means that Li, Ouyang, Xu and Zhang now have a publication on their academic records that any careful reader can see is critically flawed – something that could have been avoided had peer reviewers:

  • used their common sense to appreciate that variations in class average scores from year to year between 79.8 and 80.3 could not possibly be seen as sufficient to indicate a difference in the effectiveness of teaching approaches;
  • recommended that the authors follow the usual scientific norms and adopt the reasonable scholarly value position that the conclusion of your research should follow from, and not contradict, the results of your data analysis.


Work cited:

Notes

1 Strictly the 2017 cohort has the role of a comparison group, but NOT a control group as there was no randomisation or control of variables, so this was not a true experiment (but a 'quasi-experiment'). However, for clarity, I am here using the original authors' term 'control group'.

Read about experimental research design


2 Some journals are now asking researchers to submit their research designs and protocols to peer review BEFORE starting the research. This prevents wasted effort on work that is flawed in design. Journals will publish a report of the research carried out according to an accepted design – as long as the researchers have kept to their research plans (or only made changes deemed necessary and acceptable by the journal). This prevents researchers seeking to change features of the research because it is not giving the expected findings and means that negative results as well as positive results do get published.


3 'Implicitly' assumed as nowhere do the authors state that they think the classes all start as equivalent – but if they do not assume this then their argument has no logic.

Without this assumption, their argument is like claiming that growing conditions for tree development are better at the front of a house than at the back because on average the trees at the front are taller – even though fast-growing mature trees were planted at the front and slow-growing saplings at the back.


4 From my days working with new teachers, a common rookie mistake was assuming that one could tell a teaching innovation was successful because students achieved an average score of 63% on the (say, acids) module taught by the new method when the same class only averaged 46% on the previous (say, electromagnetism) module. Graduate scientists would look at me with genuine surprise when I asked how they knew the two tests were of comparable difficulty!

Read about why natural scientists tend to make poor social scientists


5 In my (rejected) letter to the Journal of Chemical Education I acknowledged some ambiguity in the paper's discussion of the results. Li and colleagues write:

"The average scores of undergraduates majoring in pharmaceutical engineering in the control group and the experimental group were calculated, and the results are shown in Figure 4b. Statistical significance testing was conducted on the exam scores year to year. The average score for the pharmaceutical engineering class was 79.8 points in 2017 (control group). When SCTBL was implemented for the first time in 2018, there was a slight improvement in the average score (i.e., an increase of 0.11 points, not shown in Figure 4b). However, by 2019 and 2020, the average score increased by 0.32 points and 0.54 points, respectively, with an obvious improvement trend. We used a t test to test whether the SCTBL method can create any significant difference in grades among control groups and the experimental group. The calculation results are shown as follows: t1 = 0.0663, t2 = 0.1930, t3 =0.3279 (t1 <t2 <t3 <t𝛼, t𝛼 =2.024, p>0.05), indicating that there is no significant difference in average score. After three years of continuous implementation of SCTBL, the average score showed a constant upward trend, and a steady increase was found. The SCTBL method brought about improvement in the class average, which provides evidence for its effectiveness in medicinal chemistry."

Li, et al, 2022, p.1858-1860, emphasis added

This appears to refer to three distinct measures:

  • average scores (produced by weighed summations of various assessment components as discussed above)
  • exam scores (perhaps just the "midterm examination…and final examination", or perhaps just the final examination?)
  • grades

Formal grades are not discussed in the paper (the word is only used in this one place), although the authors do refer to categorising students into descriptive classes ('levels') according to scores on 'assessments', and may see these as grades:

"Assessments have been divided into five levels: disqualified (below 60), qualified (60-69), medium (70-79), good (80-89), and excellent (90 and above)."

Li, et al, 2022, p.1856, emphasis added

In the longer extract above, the reference to testing difference in "grades" is followed by reporting the outcome of the test for "average score":

"We used a t test to test …grades …The calculation results … there is no significant difference in average score"

As Student's t-test was used, it seems unlikely that the assignment of students to grades could have been tested. That would surely have needed something like the Chi-squared statistic to test categorical data – looking for an association between (i) the distributions of the number of students in the different cells 'disqualified', 'qualified', 'medium', 'good' and 'excellent'; and (ii) treatment group.

Presumably, then, the statistical testing was applied to the average course scores shown in the graph above. This also makes sense because the classification into descriptive classes loses some of the detail in the data and there is no obvious reason why the researchers would deliberately chose to test 'reduced' data rather than the full data set with the greatest resolution.


Didactic control conditions

Another ethically questionable science education experiment?


Keith S. Taber


This seems to be a rhetorical experiment where an educational treatment that is already known to be effective is 'tested' to demonstrate that it is more effective than suboptimal teaching – by asking a teacher to constrain her teaching to students assigned to be an unethical comparison condition

one group of students were deliberately disadvantaged by asking an experienced and skilled teacher to teach in a way all concerned knew was sub-optimal so as to provide a low base line that would be outperformed by the intervention, simply to replicate a much demonstrated finding

In a scientific experiment, an intervention is made into the natural state of affairs to see if it produces a hypothesised change. A key idea in experimental research is control of variables: in the ideal experiment only one thing is changed. In the control condition all relevant variables are fixed so that there is a fair test between the experimental treatment and the control.

Although there are many published experimental studies in education, such research can rarely claim to have fully controlled all potentially relevant variables: there are (nearly always, always?) confounding factors that simply can not be controlled.

Read about confounding variables

Experimental research in education, then, (nearly always, always?) requires some compromising of the pure experimental method.

Where those compromises are substantial, we might ask if experiment was the wrong choice of methodology: even if a good experiment is often the best way to test an idea, a bad experiment may be less informative than, for example, a good case study.

That is primarily a methodological matter, but testing educational innovations and using control conditions in educational studies also raises ethical issues. After all, an experiment means experimenting with real learners' educational experiences. This can certainly be sometimes justified – but there is (or should be) an ethical imperative:

  • researchers should never ask learners to participate in a study condition they have good reason to expect will damage their opportunities to learn.

If researchers want to test a genuinely innovative teaching approach or learning resource, then they have to be confident it has a reasonable chance of being effective before asking learners to participate in a study where they will be subjected to an untested teaching input.

It is equally the case that students assigned to a control condition should never be deliberately subjected to inferior teaching simply in order to help make a strong contrast with an experimental approach being tested. Yet, reading some studies leads to a strong impression that some researchers do seek to constrain teaching to a control group to help bias studies towards the innovation being tested (Taber, 2019). That is, such studies are not genuinely objective, open-minded investigations to test a hypothesis, but 'rhetorical' studies set up to confirm and demonstrate the researchers' prior assumptions. We might say these studies do not reflect true scientific values.


A general scheme for a 'rhetorical experiment'

Read about rhetorical experiments


I have raised this issue in the research literature (Taber, 2019), so when I read experimental studies in education I am minded to check see that any control condition has been set up with a concern to ensure that the interests of all study participants (in both experimental and control conditions) have been properly considered.

Jigsaw cooperative learning in elementary science: physical and chemical changes

I was reading a study called "A jigsaw cooperative learning application in elementary science and technology lessons: physical and chemical changes" (Tarhan, Ayyıldız, Ogunc & Sesen, 2013) published in a respectable research journal (Research in Science & Technological Education).

Tarhan and colleagues adopted a common type of research design, and the journal referees and editor presumably were happy with the design of their study. However, I think the science education community should collectively be more critical about the setting up of control conditions which require students to be deliberately taught in ways that are considered to be less effective (Taber, 2019).


Jigsaw learning involves students working in co-operative groups, and in undertaking peer-teaching

Jigsaw learning is a pedagogic technique which can be seen as a constructivist, student-centred, dialogic, form of 'active learning'. It is based on collaborative groupwork and includes an element of peer-tutoring. In this paper the technique is described as "jigsaw cooperative learning", and the article authors explain that "cooperative learning is an active learning approach in which students work together in small groups to complete an assigned task" (p.185).

Read about jigsaw learning

Random assignment

The study used an experimental design, to compare between learning outcomes in two classes taught the same topic in two different ways. Many studies that compare between two classes are problematic because whole extant classes are assigned to conditions which means that the unit of analysis should be the class (experimental condition, n=1; control condition, n=1). Yet, despite this, such studies commonly analyse results as if each learner was an independent unit of analysis (e.g., experimental condition, n=c.30; control condition, n=c.30) which is necessary to obtain statistical results, but unfortunately means that inferences drawn from those statistics are invalid (Taber, 2019). Such studies offer examples of where there seems little point doing an experiment badly as the very design makes it intrinsically impossible to obtain a (i.e., a valid) statistically significant outcome.


Experimental designs may be categorised as true experiments, quasi-experiments and natural experiments (Taber, 2019).

Tarhan and colleagues, however, randomly assign the learners to the two conditions so can genuinely claim that in their study they have a true experiment: for their study, experimental condition, n=30; control condition, n=31.

Initial equivalence between groups

Assigning students in this way also helped ensure the two groups started from a similar base. Often such experimental studies use a pre-test to compare the groups before teaching. However, often the researchers look for a statistical difference between the groups which does not reach statistical significance (Taber, 2019). That is, if a statistical test shows p≥0.05 (in effect, the initial difference between the groups is not very unlikely to occur by chance) this is taken as evidence of equivalence. That is like saying we will consider two teachers to be of 'equivalent' height as long as there is no more than 30 cm difference in their height!

In effect

'not very different'

is being seen as a synonym for

'near enough the same'


Some analogies for how equivalence is determined in some studies: read about testing for initial equivalence

However, the pretest in Tarhan and colleagues' study found that the difference between two groups in performances on the pretest was at a level likely to occur by chance (not simply something more than 5%, but) 87% of the time. This is a much more convincing basis for seeing the two groups as initially similar.

So, there are two ways in which the Tarhan et al. study seemed better thought-through than many small scale experiments in teaching I have read.

Comparing two conditions

The research was carried out with "sixth grade students in a public elementary school in Izmir, Turkey" (p.184). The focus was learning about physical and chemical changes.

The experimental condition

At the outset of the study, the authors suggest it is already known that

  • "Jigsaw enhances cooperative learning" (p.185)"
  • "Jigsaw promotes positive attitudes and interests, develops communication skills between students, and increases learning achievement in chemistry" (p.186)
  • "the jigsaw technique has the potential to improve students' attitude towards science"
  • development of "students' understanding of chemical equilibrium in a first year general chemistry course [was more successful] in the jigsaw class…than …in the individual learning class"

It seems the approach being tested was already demonstrated to be effective in a range of contexts. Based on the existing research, then, we could already expect well-implemented jigsaw learning to be effective in facilitating student learning.

Similarly, the authors tell the readers that the broader category of cooperative learning has been well established as successful,

"The benefits of cooperative learning have been well documented as being

higher academic achievement,

higher level of reasoning and critical thinking skills,

deeper understanding of learned material,

better attention and less disruptive behavior in class,

more motivation to learn and achieve,

positive attitudes to subject matter,

higher self-esteem and

higher social skills."

Tarhan et al., 2013, p.185

What is there not to like here? So, what was this highly effective teaching approach compared with?

What is being compared?

Tarhan and colleagues tell readers that:

"The experimental group was taught via jigsaw cooperative learning activities developed by the researchers and the control group was taught using the traditional science and technology curriculum."

Tarhan et al., 2013, p.189
A different curriculum?

This seems an unhelpful statement as it does not seem to compare like with like:


conditioncurriculumpedagogy
experimental?jigsaw cooperative learning activities developed by the researchers
control traditional science and technology curriculum?
A genuine experiment would look to control variables, so would not simultaneously vary both curriculum and pedagogy

The study uses a common test to compare learning in the two conditions, so the study only makes sense as an experimental test of jigsaw learning if the same curriculum is being followed in both conditions. Otherwise, there is no prima facie reason to think that the post-test is equally fair in testing what has been taught in the two conditions. 1

The control condition

The paper includes an account of the control condition which seems to make it clear that both groups were taught "the same content", which is helpful as to have done otherwise would have seriously undermined the study.

The control group was instructed via a teacher-centered didactic lecture format. Throughout the lesson, the same science and technology teacher presented the same content as for the experimental group to achieve the same learning objectives, which were taught via detailed instruction in the experimental group. This instruction included lectures, discussions and problem solving. During this process, the teacher used the blackboard and asked some questions related to the subject. Students also used a regular textbook. While the instructor explained the subject, the students listened to her and took notes. The instruction was accomplished in the same amount of time as for the experimental group.

Tarhan et al., 2013, p.194

So, it seems:


conditioncurriculumpedagogy
experimental[by inference: "traditional science and technology curriculum"]jigsaw cooperative learning activities developed by the researchers
control traditional science and technology curriculum
[the same content as for the experimental group to achieve the same learning objectives]
teacher-centred didactic lecture format:
instructor explained the subject and asked questions
controlled variableindependent variable
An experiment relies on control of variables and would not simultaneously vary both curriculum and pedagogy

The statement is helpful, but might be considered ambiguous as "this instruction which included lectures, discussions and problem solving" seems to relate to what had been "taught via detailed instruction in the experimental group".

But this seems incongruent with the wider textual context. The experimental group were taught by a jigsaw learning technique – not lectures, discussions and problem solving. Yet, for that matter, the experimental group were not taught via 'detailed instruction' if this means the teacher presenting the curriculum content. So, this phrasing seems unhelpfully confusing (to me, at least – presumably, the journal referees and editor thought this was clear enough.)

So, this probably means the "lectures, discussions and problem solving" were part of the control condition where "the teacher used the blackboard and asked some questions related to the subject. Students also used a regular textbook. While the instructor explained the subject, the students listened to her and took notes".

'Lectures' certainly fit with that description.

However, genuine 'discussion' work is a dialogic teaching method and would not seem to fit within a "teacher-centered didactic lecture format". But perhaps 'discussion' simply refers to how the "teacher used the blackboard and asked some questions" that members of the class were invited to answer?

Read about dialogic teaching

Writing-up research is a bit like teaching in that in presenting to a particular audience, one works with a mental model of what that audience already knowns and understands, and how they use specific terms, and this model is never likely to be perfectly accurate:

  • when teaching, the learners tend to let you know this, whereas,
  • when writing, this kind of immediate feedback is lacking.

Similarly, problem-solving would not seem to fit within a "teacher-centered didactic lecture format". 'Problem-solving' engages high level cognitive and metacognitive skills because a 'problem' is a task that students are not able to respond to simply by recalling what they have been told and applying learnt algorithms. Problem-solving requires planning and applying strategies to test out ideas and synthesise knowledge. Yet teachers and textbooks commonly refer to simple questions that simply test recall and comprehension, or direct application of learnt techniques, as 'problems' when they are better understood as 'exercises' as they do not pose authentic problems.

The imprecise use of terms that may be understood differently across diverse contexts is characteristic of educational discourse, so Tarhan and colleagues may have simply used the labels that are normally applied in the context where they are working. It should also be noted that as the researchers are based in Turkey they are presumably finding the best English translations they can for the terms used locally.

Read about the challenges of translation in research writing

So, it seems we have:


Experimental conditionin one of the conditions?Control condition
Jigsaw learning (set out in some detail in the paper) – an example of
cooperative learning – an active learning approach in which students work together in small groups
detailed instruction?
discussions (=teacher questioning?)
problem solving? (=practice exercises?)
teacher-centred didactic lecture format…the teacher used the blackboard and asked some questions…a regular textbook….the instructor explained the subject, the students listened and took notes
The independent variable – teaching methodology

The teacher variable

One of the major problems with some educational experiments comparing different teaching approaches is the confound of the teacher. If

  • class A is taught through approach 'a' by teacher 1, and
  • class B is taught through approach 'b' by teacher 2

then even if there is a good case that class A and class B start off as 'equivalent' in terms of readiness to learn about the focal topic then any differences in study outcomes could be as much down to different teachers (and we all know that different teachers are not equivalent!) as different teaching methodology.

At first sight this is easily solved by having the same teacher teach both classes (as in the study discussed here). That certainly seems to help. But, a little thought suggests it is not a foolproof approach (Taber, 2019).

Teachers inevitably have better rapport with some classes than others (even when those classes are shown to be technically 'equivalent') simply because that is the nature of how diverse personalities interact. 3 Even the most professional teachers find they prefer to teach some classes than others, enjoy the teaching more, and seem to get better results (even when the classes are supposed to be equivalent).

In an experiment, there is no reason why the teacher would work better with a class assigned the experimental condition; it might just as well be the control condition. However, this is still a confound and there is no obvious solution to this, except having multiple classes and teachers in each condition such that the statistics can offer guide on whether outcomes are sufficiently unlikely to be able to reasonable discount these types of effect.

Different teachers also have different styles and approaches and skills sets – so the same teacher will not be equally suited to every teaching approach and pedagogy. Again, this does not necessarily advantage the experimental condition, but, again, is something that can only be addressed by having a diverse range of teachers in each condition (Taber, 2019).

So, although we might expect having the same teacher teach both classes is the preferred approach, the same teacher is not exactly the same teacher in different classes or teaching in different ways.

And what do participants expect will happen?

Moreover, expectancy effects can be very influential in education. Expecting something to work, or not work, has been shown to have real effects on outcomes. It may not be true, as some motivational gurus like to pretend, that we can all of us achieve anything if only we believe: but we are more likely to be successful when we believe we can succeed. When confident, we tend to be more motivated, less easily deterred, and (given the human capacity for perceiving with confirmation bias) more likely to judge we are making good progress. So, any research design which communicates to teachers and students (directly, or through the teacher's or researcher's enthusiasm) an expectation of success in some innovation is more likely to lead to success. This is a potential confound that is not even readily addressed by having large numbers of classes and teachers (Taber, 2019)!

Read about expectancy effects

The authors report that

Before implementation of the study, all students and their families were informed about the aims of the study and the privacy of their personal information. Permission for their children attend the study was obtained from all families.

Tarhan et al., 2013, p.194

This is as it should be. School children are not data-fodder for researchers, and they should always be asked for, and give, voluntary informed consent when recruited to join a research project. However, researchers need to open and honest about their work, whilst also being careful about how they present their research aims. We can imagine a possible form of invitation,

We would like you to invite you to be part of a study where some of you will be subject to traditional learning through a teacher-centred didactic lecture format where the teacher will give you notes and ask you questions, and some of you will learn by a different approach that has been shown to enhance learning, promote positive attitudes and interests, develop communication skills, increase achievement, support higher level of reasoning and critical thinking skills, lead to deeper understanding of learned material…

An honest, but unhelpful, briefing for students and parents

If this was how the researchers understood the background to their study, then this would be a fair and honest briefing. Yet, this would clearly set up strong expectations in the student groups!

A suitable teacher

Tarhan and colleagues report that

"A teacher experienced in active learning was trained in how to implement the instruction based on jigsaw cooperative learning. The teacher and researchers discussed the instructional plans before implementing the activities."

Tarhan et al., 2013, p.189

So, the teacher who taught both classes, using an jigsaw cooperative learning in one class and a teacher-centred didactic lecture approach in the other was "experienced in active learning". So, it seems that

  • the researchers were already convinced that active learning approaches were far superior to teaching via a lecture approach
  • the teacher had experience in teaching though more engaging, effective student-centred active learning approaches

despite this, a control condition was set-up that required the teacher to, in effect, de-skill, and teach in a way the researchers were well aware research suggested was inferior, for the sake of carrying out an experiment to demonstrate in a specific context what had already been well demonstrated elsewhere.

In other words, it seems that one group of students were deliberately disadvantaged by asking an experienced and skilled teacher to teach in a way all concerned knew was sub-optimal, so as to provide a low base line that would be outperformed by the intervention, simply to replicate a much demonstrated finding. When seen in that way, this is surely unethical research.

The researchers may not have been consciously conceptualising their design in those terms, but it is hard to see this as a fair test of the jigsaw learning approach – it can show it is better than suboptimal teaching, but does not offer a comparison with an example of the kind of teaching that is recommended in the national context where the research took place.

Unethical, but not unusual

I am not seeking to pick out Tarhan and colleagues in particular for designing an unethical study, because they are not unique in adopting this approach (Taber, 2019): indeed, they are following a common formula (an experimental 'paradigm' in the sense the term is used in psychology).

Tarhan and colleagues have produced a study that is interesting and informative, and which seems well planned, and strongly-motivated when considered as part of tradition of such studies. Clearly, the referees and journal editor were not minded to question the procedure. The problem is that as a science education community we have allowed this tradition to continue such that a form of study that was originally genuinely open-ended (in that it examined under-researched teaching approaches of untested efficacy) has not been modified as published study after published study has slowly turned those untested teaching approaches into well-researched and repeatedly demonstrated approaches.

So much so, that such studies are now in danger of simply being rhetorical research – where (as in this case) the authors tell readers at the outset that it is already known that what they are going to test is widely shown to be effective good practice. Rhetorical research is set up to produce an expected result, and so is not authentic research. A real experiment tests a genuine hypothesis rather than demonstrates a commonplace. A question researchers might ask themselves could be

'how surprised would I be if this leads to a negative outcome'?

If the answer is

'that would be very surprising'

then they should consider modifying their research so it is likely to be more than minimally informative.

Finding out that jigsaw learning achieved learning objectives better/as well as/not so well as, say, P-O-E (predict-observe-explain) activities might be worth knowing: that it is better than deliberately constrained teaching does not tell us very much that is not obvious.

I do think this type of research design is highly questionable and takes unfair advantage of students. It fails to meet my suggested guideline that

  • researchers should never ask learners to participate in a study condition they have good reason to expect will damage their opportunities to learn

The problem of generalisation

Of course, one fair response is that despite all the claims of the superiority of constructivist, active, cooperatative (etc.) learning approaches, the diversity of educational contexts means we can not simply generalise from an experiment in one context and assume the results apply elsewhere.

Read about generalising from research

That is, the research literature shows us that jigsaw learning is an effective teaching approach, but we cannot be certain it will be effective in the particular context of teaching about chemical and physical changes to sixth grade students in a public elementary school in Izmir, Turkey.

Strictly that is true! But we should ask:

do we not know this because

  1. research shows a great variation in whether jigsaw learning is effective or not as it differs according to contexts and conditions
  2. although jigsaw learning has consistently been shown to be effective in many different contexts, no one has yet tested it in the specific case of teaching about chemical and physical changes to sixth grade students in a public elementary school in Izmir, Turkey

It seems clear from the paper that the researchers are presenting the second case (in which case the study would actually be of more interest and importance if had been found that in this context jigsaw learning was not effective).

Given there are very good reasons to expect a positive outcome, there seems no need to 'stack the odds' by using deliberately detrimental control conditions.

Even had situation 1 applied, it seems of limited value to know that jigsaw learning is more effective (in teaching about chemical and physical changes to sixth grade students in a public elementary school in Izmir, Turkey) than an approach we already recognise is suboptimal.

An ethical alternative

This does not mean that there is no value in research that explores well-established teaching approaches in new contexts. However, unless the context is very different from where the approach has already been widely demonstrated, there is little value in comparing it with approaches that are known to be sub-optimal (which in Turkey, a country where constructivist 'reform' teaching approaches are supposed to be the expected standard, seem to often be labelled as 'traditional').

Detailed case studies of the implementation of a reform pedagogy in new contexts that collect rich 'process' data to explore challenges to implementation and to identify especially effective specific practices would surely be more informative? 4

If researchers do feel the need to do experiments, then rather than comparing known-to-be-effective approaches with suboptimal approaches hoping to demonstrate what everyone already knows, why not use comparison conditions that really test the innovation. Of course jigsaw learning out performed lecturing in an elementary school – but how might it have compared with another constructivist approach?

I have described the constructivist science teacher as a kind of learning doctor. Like medical doctors, our first tenet should be to do no harm. So, if researchers want to set up experimental comparisons, they have a duty to try to set up two different approaches that they believe are likely to benefit the learners (whichever condition they are assigned to):

  • not one condition that advantages one group of students
  • and another which deliberately disadvantages another group of students for the benefit of a 'positive' research outcome.

If you already know the outcome then it is not genuine research – and you need a better research question.


Work cited:

Note:

1 Imagine teaching one class about acids by jigsaw learning, and teaching another about the nervous system by some other pedagogy – and then comparing the pedagogies by administering a test – about acids! The class in the jigsaw condition might well do better, without it being reasonable to assume this reflects more effective pedagogy.

So, I am tempted to read this as simply a drafting/typographical error that has been missed, and suspect the authors intended to refer to something like the traditional approach to teaching the science and technology curriculum. Otherwise the experiment is fatally flawed.

Yet, one purpose of the study was to find out

"Does jigsaw cooperative learning instruction contribute to a better conceptual understanding of 'physical and chemical changes' in sixth grade students compared to the traditional science and technology curriculum?"

Tarhan et al., 2013, p.187

This reads as if the researchers felt the curriculum was not sufficiently matched to what they felt were the most important learning objectives in the topic of physical and chemical changes, so they have undertaken some curriculum development, as well as designed a teaching unit accordingly, to be taught by jigsaw learning pedagogy. If so the experiment is testing

traditional curriculum x traditional pedagogy

vs.

reformed curriculum x innovative pedagogy

making it impossible to disentangle the two components.

This suggests the researchers are testing the combination of curriculum and pedagogy, and doing so with a test biased towards the experimental condition. This seems illogical, but I have actually worked in a project where we faced a similar dilemma. In the epiSTEMe project we designed innovative teaching units for lower secondary science and maths. In both physics units we incorporated innovative aspects to the curriculum.

  • In the forces unit material on proportionality was introduced, with examples (car stopping distance) normally not taught at that grade level (Y7);
  • In the electricity unit the normal physics content was embedded in an approach designed to teach aspects of the nature of science.

In the forces unit, the end-of-topic test included material that was included in the project-designed units, but unlikely to be taught in the control classes. There was evidence that on average students in the project classes did better on the test.

In the electricity unit, the nature of science objectives were not tested as these would not necessarily have been included in teaching control classes. On average, there was very little difference in learning about electrical circuits in the two conditions. There was however a very wide range of class performances – oddly just as wide in the experimental condition (where all classes had a common scheme of work, common activities, and common learning materials) as in the control condition where teachers taught the topic in their customary ways.


2 It could be read either as


1

ControlExperimental
The control group was instructed via a teacher-centered didactic lecture format. Throughout the lesson, the same science and technology teacher presented the same content as for the experimental group to achieve the same learning objectives, which were taught via detailed instruction in the experimental group.
…detailed instruction in the experimental group. This instruction included lectures, discussions and problem solving.
During this process, the teacher used the blackboard and asked some questions related to the subject. Students also used a regular textbook. While the instructor explained the subject, the students listened to her and took notes. The instruction was accomplished in the same amount of time as for the experimental group.
What was 'this instruction' which included lectures, discussions and problem solving?

or


2

ControlExperimental
The control group was instructed via a teacher-centered didactic lecture format. Throughout the lesson, the same science and technology teacher presented the same content as for the experimental group to achieve the same learning objectives, which were taught via detailed instruction in the experimental group.
…detailed instruction in the experimental group.
This [sic] instruction included lectures, discussions and problem solving. During this process, the teacher used the blackboard and asked some questions related to the subject. Students also used a regular textbook. While the instructor explained the subject, the students listened to her and took notes. The instruction was accomplished in the same amount of time as for the experimental group.
What was 'this instruction' which included lectures, discussions and problem solving?

3 A class, of course, is not a person, but a collection of people, so perhaps does not have a 'personality' as such. However, for teachers, classes do take on something akin to a personality.

This is not just an impression. It was pointed out above that if a researcher wants to treat each learner as a unit of analysis (necessary to use inferential statistics when only working with a small number of classes) then learners, not intact classes, should be assigned to conditions. However, even a newly formed class will soon develop something akin to a personality. This will certainly be influenced by individual learners present but develop through the history of their evolving mutual interactions and is not just a function of the sum of their individual characteristics.

So, even when a class is formed by random assignment of learners at the start of a study, it is still strictly questionable whether these students should be seen as independent units for analysis (Taber, 2019).


4 I suspect that science educators have a justified high regard for experimental method in the natural sciences, which sometimes blinkers us to its limitations in social contexts where there are myriad interacting variables and limited controls.

Read: Why do natural scientists tend to make poor social scientists?


Delusions of educational impact

A 'peer-reviewed' study claims to improve academic performance by purifying the souls of students suffering from hallucinations


Keith S. Taber


The research design is completely inadequate…the whole paper is confused…the methodology seems incongruous…there is an inconsistency…nowhere is the population of interest actually identified…No explanation of the discrepancy is provided…results of this analysis are not reported…the 'interview' technique used in the study is highly inadequate…There is a conceptual problem here…neither the validity nor reliability can be judged…the statistic could not apply…the result is not reported…approach is completely inappropriate…these tables are not consistent…the evidence is inconclusive…no evidence to demonstrate the assumed mechanism…totally unsupported claims…confusion of recommendations with findings…unwarranted generalisation…the analysis that is provided is useless…the research design is simply inadequate…no control condition…such a conclusion is irresponsible

Some issues missed in peer review for a paper in the European Journal of Education and Pedagogy

An invitation to publish without regard to quality?

I received an email from an open-access journal called the European Journal of Education and Pedagogy, with the subject heading 'Publish Fast and Pay Less' which immediately triggered the thought "another predatory journal?" Predatory journals publish submissions for a fee, but do not offer the editorial and production standards expected of serious research journals. In particular, they publish material which clearly falls short of rigorous research despite usually claiming to engage in peer review.

A peer reviewed journal?

Checking out the website I found the usual assurances that the journal used rigorous peer review as:

"The process of reviewing is considered critical to establishing a reliable body of research and knowledge. The review process aims to make authors meet the standards of their discipline, and of science in general.

We use a double-blind system for peer-reviewing; both reviewers and authors' identities remain anonymous to each other. The paper will be peer-reviewed by two or three experts; one is an editorial staff and the other two are external reviewers."

https://www.ej-edu.org/index.php/ejedu/about

Peer review is critical to the scientific process. Work is only published in (serious) research journals when it has been scrutinised by experts in the relevant field, and any issues raised responded to in terms of revisions sufficient to satisfy the editor.

I could not find who the editor(-in-chief) was, but the 'editorial team' of European Journal of Education and Pedagogy were listed as

  • Bea Tomsic Amon, University of Ljubljana, Slovenia
  • Chunfang Zhou, University of Southern Denmark, Denmark
  • Gabriel Julien, University of Sheffield, UK
  • Intakhab Khan, King Abdulaziz University, Saudi Arabia
  • Mustafa Kayıhan Erbaş, Aksaray University, Turkey
  • Panagiotis J. Stamatis, University of the Aegean, Greece

I decided to look up the editor based in England where I am also based but could not find a web presence for him at the University of Sheffield. Using the ORCID (Open Researcher and Contributor ID) provided on the journal website I found his ORCID biography places him at the University of the West Indies and makes no mention of Sheffield.

If the European Journal of Education and Pedagogy is organised like a serious research journal, then each submission is handled by one of this editorial team. However the reference to "editorial staff" might well imply that, like some other predatory journals I have been approached by (e.g., Are you still with us, Doctor Wu?), the editorial work is actually carried out by office staff, not qualified experts in the field.

That would certainly help explain the publication, in this 'peer-reviewed research journal', of the first paper that piqued my interest enough to motivate me to access and read the text.


The Effects of Using the Tazkiyatun Nafs Module on the Academic Achievement of Students with Hallucinations

The abstract of the paper published in what claims to be a peer-reviewed research journal

The paper initially attracted my attention because it seemed to about treatment of a medical condition, so I wondered was doing in an education journal. Yet, the paper seemed to also be about an intervention to improve academic performance. As I read the paper, I found a number of flaws and issues (some very obvious, some quite serious) that should have been spotted by any qualified reviewer or editor, and which should have indicated that possible publication should have been be deferred until these matters were satisfactorily addressed.

This is especially worrying as this paper makes claims relating to the effective treatment of a symptom of potentially serious, even critical, medical conditions through religious education ("a  spiritual  approach", p.50): claims that might encourage sufferers to defer seeking medical diagnosis and treatment. Moreover, these are claims that are not supported by any evidence presented in this paper that the editor of the European Journal of Education and Pedagogy decided was suitable for publication.


An overview of what is demonstrated, and what is claimed, in the study.

Limitations of peer review

Peer review is not a perfect process: it relies on busy human beings spending time on additional (unpaid) work, and it is only effective if suitable experts can be found that fit with, and are prepared to review, a submission. It is also generally more challenging in the social sciences than in the natural sciences. 1

That said, one sometimes finds papers published in predatory journals where one would expect any intelligent person with a basic education to notice problems without needing any specialist knowledge at all. The study I discuss here is a case in point.

Purpose of the study

Under the heading 'research objectives', the reader is told,

"In general, this journal [article?] attempts to review the construction and testing of Tazkiyatun Nafs [a Soul Purification intervention] to overcome the problem of hallucinatory disorders in student learning in secondary schools. The general objective of this study is to identify the symptoms of hallucinations caused by subtle beings such as jinn and devils among students who are the cause of disruption in learning as well as find solutions to these problems.

Meanwhile, the specific objective of this study is to determine the effect of the use of Tazkiyatun Nafs module on the academic achievement of students with hallucinations.

To achieve the aims and objectives of the study, the researcher will get answers to the following research questions [sic]:

Is it possible to determine the effect of the use of the Tazkiyatun Nafs module on the academic achievement of students with hallucinations?"

Awang, 2022, p.42

I think I can save readers a lot of time regarding the research question by suggesting that, in this study, at least, the answer is no – if only because the research design is completely inadequate to answer the research question. (I should point that the author comes to the opposite conclusion: e.g., "the approach taken in this study using the Tazkiyatun Nafs module is very suitable for overcoming the problem of this hallucinatory disorder", p.49.)

Indeed, the whole paper is confused in terms of what it is setting out to do, what it actually reports, and what might be concluded. As one example, the general objective of identifying "the symptoms of hallucinations caused by subtle beings such as jinn and devils" (but surely, the hallucinations are the symptoms here?) seems to have been forgotten, or, at least, does not seem to be addressed in the paper. 2


The study assumes that hallucinations are caused by subtle beings such as jinn and devils possessing the students.
(Image by Tünde from Pixabay)

Methodology

So, this seems to be an intervention study.

  • Some students suffer from hallucinations.
  • This is detrimental to their education.
  • It is hypothesised that the hallucinations are caused by supernatural spirits ("subtle beings that lead to hallucinations"), so, a soul purification module might counter this detriment;
  • if so, sufferers engaging with the soul purification module should improve their academic performance;
  • and so the effect of the module is being tested in the study.

Thus we have a kind of experimental study?

No, not according to the author. Indeed, the study only reports data from a small number of unrepresentative individuals with no controls,

"The study design is a case study design that is a qualitative study in nature. This study uses a case study design that is a study that will apply treatment to the study subject to determine the effectiveness of the use of the planned modules and study variables measured many times to obtain accurate and original study results. This study was conducted on hallucination disorders [students suffering from hallucination disorders?] to determine the effectiveness of the Tazkiyatun Nafs module in terms of aspects of student academic achievement."

Awang, 2022, p.42

Case study?

So, the author sees this as a case study. Research methodologies are better understood as clusters of similar approaches rather than unitary categories – but case study is generally seen as naturalistic, rather than involving an intervention by an external researcher. So, case study seems incongruous here. Case study involves the detailed exploration of an instance (of something of interest – a lesson, a school, a course of tudy, a textbook, …) reported with 'thick description'.

Read about the characteristics of case study research

The case is usually a complex phenomena which is embedded within a context from which is cannot readily be untangled (for example, a lesson always takes place within a wider context of a teacher working over time with a class on a course of study, within a curricular, and institutional, and wider cultural, context, all of which influence the nature of the specific lesson). So, due to the complex and embedded nature of cases, they are all unique.

"a case study is a study that is full of thoroughness and complex to know and understand an issue or case studied…this case study is used to gain a deep understanding of an issue or situation in depth and to understand the situation of the people who experience it"

Awang, 2022, p.42

A case is usually selected either because that case is of special importance to the researcher (an intrinsic case study – e.g., I studied this school because it is the one I was working in) or because we hope this (unique) case can tell us something about similar (but certainly not identical) other (also unique) cases. In the latter case [sic], an instrumental case study, we are always limited by the extent we might expect to be able to generalise beyond the case.

This limited generalisation might suggest we should not work with a single case, but rather look for a suitably representative sample of all cases: but we sometimes choose case study because the complexity of the phenomena suggests we need to use extensive, detailed data collection and analyses to understand the complexity and subtlety of any case. That is (i.e., the compromise we choose is), we decide we will look at one case in depth because that will at least give us insight into the case, whereas a survey of many cases will inevitably be too superficial to offer any useful insights.

So how does Awang select the case for this case study?

"This study is a case study of hallucinatory disorders. Therefore, the technique of purposive sampling (purposive sampling [sic]) is chosen so that the selection of the sample can really give a true picture of the information to be explored ….

Among the important steps in a research study is the identification of populations and samples. The large group in which the sample is selected is termed the population. A sample is a small number of the population identified and made the respondents of the study. A case or sample of n = 1 was once used to define a patient with a disease, an object or concept, a jury decision, a community, or a country, a case study involves the collection of data from only one research participant…

Awang, 2022, p.42

Of course, a case study of "a community, or a country" – or of a school, or a lesson, or a professional development programme, or a school leadership team, or a homework policy, or an enrichnment activity, or … – would almost certainly be inadequate if it was limited to "the collection of data from only one research participant"!

I do not think this study actually is "a case study of hallucinatory disorders [sic]". Leading aside the shift from singular ("a case study") to plural ("disorders"), the research does not investigate a/some hallucinatory disorders, but the effect of a soul purification module on academic performance. (Actually, spoiler alert  😉, it does not actually investigate the effect of a soul purification module on academic performance either, but the author seems to think it does.)

If this is a case study, there should be the selection of a case, not a sample. Sometimes we do sample within a case in case study, but only from those identified as part of the case. (For example, if the case was a year group in a school, we may not have resources to interact in depth with several hundred different students). Perhaps this is pedantry as the reader likely knows what Awang meant by 'sample' in the paper – but semantics is important in research writing: a sample is chosen to represent a population, whereas the choice of case study is an acknowledgement that generalisation back to a population is not being claimed).

However, if "among the important steps in a research study is the identification of populations" then it is odd that nowhere in the paper is the population of interest actually specified!

Things slip our minds. Perhaps Awang intended to define the population, forgot, and then missed this when checking the text – buy, hey, that is just the kind of thing the reviewers and editor are meant to notice! Otherwise this looks very like including material from standard research texts to play lip-service to the idea that research-design needs to be principled, but without really appreciating what the phrases used actually mean. This impression is also given by the descriptions of how data (for example, from interviews) were analysed – but which are not reflected at all in the results section of the paper. (I am not accusing Awang of this, but because of the poor standard of peer review not raising the question, the author is left vulnerable to such an evaluation.)

The only one research participant?

So, what do we know about the "case or sample of n = 1 ", the "only one research participant" in this study?

The actual respondents in this case study related to hallucinatory disorders were five high school students. The supportive respondents in the case study related to hallucination disorders were five counseling teachers and five parents or guardians of students who were the actual respondents."

Awang, 2022, p.42

It is certainly not impossible that a case could comprise a group of five people – as long as those five make up a naturally bounded group – that is a group that a reasonable person would recognise as existing as a coherent entiy as they clearly had something in common (they were in the same school class, for example; they were attending the same group therapy session, perhaps; they were a friendship group; they were members of the same extended family diagnosed with hallucinatory disorders…something!) There is no indication here of how these five make up a case.

The identification of the participants as a case might have made sense had the participants collectively undertaken the module as a group, but the reader is told: "This study is in the form of a case study. Each practice and activity in the module are done individually" (p.50). Another justification could have been if the module had been offered in one school, and these five participants were the students enrolled in the programme at that time but as "analysis of  the  respondents'  academic  performance  was conducted  after  the  academic  data  of  all  respondents  were obtained  from  the  respective  respondent's  school" (p.45) it seems they did not attend a single school.

The results tables and reports in the text refer to "respondent 1" to "respondent 4". In case study, an approach which recognises the individuality and inherent value of the particular case, we would usually assign assumed names to research participants, not numbers. But if we are going to use numbers, should there not be a respondent 5?

The other one research participant?

It seems that these is something odd here.

Both the passage above, and the abstract refer to five respondents. The results report on four. So what is going on? No explanation of the discrepancy is provided. Perhaps:

  • There only ever were four participants, and the author made a mistake in counting.
  • There only ever were four participants, and the author made a typographical mistake (well, strictly, six typographical mistakes) in drafting the paper, and then missed this in checking the manuscript.
  • There were five respondents and the author forgot to include data on respondent 5 purely by accident.
  • There were five respondents, but the author decided not to report on the fifth deliberately for a reason that is not revealed (perhaps the results did not fit with the desired outcome?)

The significant point is not that there is an inconsistency but that this error was missed by peer reviewers and the editor – if there ever was any genuine peer review. This is the kind of mistake that a school child could spot – so, how is it possible that 'expert reviewers' and 'editorial staff' either did not notice it, or did not think it important enough to query?

Research instruments

Another section of the paper reports the instrumentation used in the paper.

"The research instruments for this study were Takziyatun Nafs modules, interview questions, and academic document analysis. All these instruments were prepared by the researcher and tested for validity and reliability before being administered to the selected study sample [sic, case?]."

Awang, 2022, p.42

Of course, it is important to test instruments for validity and reliability (or perhaps authenticity and trustworthiness when collecting qualitative data). But it is also important

  • to tell the reader how you did this
  • to report the outcomes

which seems to be missing (apart from in regard to part of the implemented module – see below). That is, the reader of a research study wants evidence not simply promises. Simply telling readers you did this is a bit like meeting a stranger who tells you that you can trust them because they (i.e., say that they) are honest.

Later the reader is told that

"Semi- structured interview questions will be [sic, not 'were'?] developed and validated for the purpose of identifying the causes and effects of hallucinations among these secondary school students…

…this interview process will be [sic, not 'was'] conducted continuously [sic!] with respondents to get a clear and specific picture of the problem of hallucinations and to find the best solution to overcome this disorder using Islamic medical approaches that have been planned in this study

Awang, 2022, pp.43-44

At the very least, this seems to confuse the plan for the research with a report of what was done. (But again, apparently, the reviewers and editorial staff did not think this needed addressing.) This is also confusing as it is not clear how this aspect of the study relates to the intervention. Were the interviews carried out before the intervention to help inform the design of the modules (presumably not as they had already been "tested for validity and reliability before being administered to the selected study sample"). Perhaps there are clear and simple answers to such questions – but the reader will not know because the reviewers and editor did not seem to feel they needed to be posed.

If "Interviews are the main research instrument in this study" (p.43), then one would expect to see examples of the interview schedules – but these are not presented. The paper reports a complex process for analysing interview data, but this is not reflected in the findings reported. The readers is told that the six stage process leads to the identifications and refinement of main and sub-categories. Yet, these categories are not reported in the paper. (But, again, peer reviewers and the editor did not apparently raise this as something to be corrected.) More generally "data  analysis  used  thematic  analysis  methods" (p.44), so why is there no analysis presented in terms of themes? The results of this analysis are simply not reported.

The reader is told that

"This  interview  method…aims to determine the respondents' perspectives, as well as look  at  the  respondents'  thoughts  on  their  views  on  the issues studied in this study."

Awang, 2022, p.44

But there is no discussion of participants perspectives and views in the findings of the study. 2 Did the peer reviewers and editor not think this needed addressing before publication?

Even more significantly, in a qualitative study where interviews are supposedly the main research instrument, one would expect to see extracts from the interviews presented as part of the findings to support and exemplify claims being made: yet, there are none. (Did this not strike the peer reviewers and editor as odd: presumably they are familiar with the norms of qualitative research?)

The only quotation from the qualitative data (in this 'qualitative' study) I can find appears in the implications section of the paper:

"Are you aware of the importance of education to you? Realize. Is that lesson really important? Important. The success of the student depends on the lessons in school right or not? That's right"

Respondent 3: Awang, 2022, p.49

This seems a little bizarre, if we accept this is, as reported, an utterance from one of the students, Respondent 3. It becomes more sensible if this is actually condensed dialogue:

"Are you aware of the importance of education to you?"

"Realize."

"Is that lesson really important?"

"Important."

"The success of the student depends on the lessons in school right or not?"

"That's right"

It seems the peer review process did not lead to suggesting that the material should be formatted according to the norms for presenting dialogue in scholarly texts by indicating turns. In any case, if that is typical of the 'interview' technique used in the study then it is highly inadequate, as clearly the interviewer is leading the respondent, and this is more an example of indoctrination than open-ended enquiry.

Random sampling of data

Completely incongruous with the description of the purposeful selection of the participants for a case study is the account of how the assessment data was selected for analysis:

"The  process  of  analysis  of  student  achievement documents is carried out randomly by taking the results of current  examinations  that  have  passed  such  as the  initial examination of the current year or the year before which is closest  to  the  time  of  the  study."

Awang, 2022, p.44

Did the peer reviewers or editor not question the use of the term random here? It is unclear what is meant to by 'random' here, but clearly if the analysis was based on randomly selected data that would undermine the results.

Validating the soul purification module

There is also a conceptual problem here. The Takziyatun Nafs modules are the intervention materials (part of what is being studied) – so they cannot also be research instruments (used to study them). Surely, if the Takziyatun Nafs modules had been shown to be valid and reliable before carrying out the reported study, as suggested here, then the study would not be needed to evaluate their effectiveness. But, presumably, expert peer reviewers (if there really were any) did not see an issue here.

The reliability of the intervention module

The Takziyatun Nafs modules had three components, and the author reports the second of the three was subjected to tests of validity and reliability. It seems that Awang thinks that this demonstrates the validity and reliability of the complete intervention,

"The second part of this module will go through [sic] the process of obtaining the validity and reliability of the module. Proses [sic] to obtain this validity, a questionnaire was constructed to test the validity of this module. The appointed specialists are psychologists, modern physicians (psychiatrists), religious specialists, and alternative medicine specialists. The validity of the module is identified from the aspects of content, sessions, and activities of the Tazkiyatun Nafs module. While to obtain the value of the reliability coefficient, Cronbach's alpha coefficient method was used. To obtain this Cronbach's alpha coefficient, a pilot test was conducted on 50 students who were randomly selected to test the reliability of this module to be conducted."

Awang, 2022, pp.43-44

Now to unpack this, it may be helpful to briefly outline what the intervention involved (as as the paper is open access anyone can access and read the full details in the report).


From the MGM film 'A Night at the Opera' (1935): "The introduction of the module will elaborate on the introduction, rationale, and objectives of this module introduced"

The description does not start off very helpfully ("The introduction of the module will elaborate on the introduction, rationale, and objectives of this module introduced" (p.43) put me in mind of the Marx brothers: "The party of the first part shall be known in this contract as the party of the first part"), but some key points are,

"the Tazkiyatun Nafs module was constructed to purify the heart of each respondent leading to the healing of hallucinatory disorders. This liver purification process is done in stages…

"the process of cleansing the patient's soul will be done …all the subtle beings in the patient will be expelled and cleaned and the remnants of the subtle beings in the patient will be removed and washed…

The second process is the process of strengthening and the process of purification of the soul or heart of the patient …All the mazmumah (evil qualities) that are in the heart must be discarded…

The third process is the process of enrichment and the process of distillation of the heart and the practices performed. In this process, there will be an evaluation of the practices performed by the patient as well as the process to ensure that the patient is always clean from all the disturbances and disturbances [sic] of subtle beings to ensure that students will always be healthy and clean from such disturbances…

Awang, 2022, p.45, p.43

Quite how this process of exorcising and distilling and cleansing will occur is not entirely clear (and if the soul is equated with the heart, how is the liver involved?), but it seems to involve reflection and prayer and contemplation of scripture – certainly a very personal and therapeutic process.

And yet its validity and reliability was tested by giving a questionnaire to 50 students randomly selected (from the unspecified population, presumably)? No information is given on how a random section was made (Taber, 2013) – which allows a reader to be very sceptical that this actually was a random sample from the (un?)identified population, and not just an arbitrary sample of 50 students. (So, that is twice the word 'random' is used in the paper when it seems inappropriate.)

It hardly matters here, as clearly neither the validity nor the reliability of a spiritual therapy can be judged from a questionnaire (especially when administered to people who have never undertaken the therapy). In any case, the "reliability coefficient" obtained from an administration of a questionnaire ONLY applies to that sample on that occasion. So, the statistic could not apply to the four participants in the study. And, in any case, the result is not reported, so the reader has no idea what the value of Cronbach's alpha was (but then, this was described as a qualitative study!)

Moreover, Cronbach's alpha only indicates the internal coherence of the items on a scale (Taber, 2019): so, it only indicates whether the set of questions included in the questionnaire seem to be accessing the same underlying construct in motivating the responses of those surveyed across the set of items. It gives no information about the reliability of the instrument (i.e., whether it would give the same results on another occasion).

This approach to testing validity and reliability is then completely inappropriate and unhelpful. So, even if the outcomes of the testing had been reported (and they are not) they would not offer any relevant evidence. Yet it seems that peer reviewers and editor did not think to question why this section was included in the paper.

Ethical issues

A study of this kind raises ethical issues. It may well be that the research was carried out in an entirely proper and ethical manner, but it is usual in studies with human participants ('human subjects') to make this clear in the published report (Taber, 2014b). A standard issue is whether the participants gave voluntary, informed, consent. This would mean that they were given sufficient information about the study at the outset to be able to decide if they wished to participate, and were under no undue pressure to do so. The 'respondents' were school students: if they were considered minors in the research context (and oddly for a 'case study' such basic details as age and gender are not reported) then parental permission would also be needed, again subject to sufficient briefing and no duress.

However, in this specific research there are also further issues due to the nature of the study. The participants were subject to medical disorders, so how did the researcher obtain information about, and access to, the students without medical confidentiality being broken? Who were the 'gatekeepers' who provided access to the children and their personal data? The researcher also obtained assessment data "from  the  class  teacher  or  from  the  Student Affairs section of the student's school" (p.44), so it is important to know that students (and parents/guardians) consented to this. Again, peer review does not seem to have identified this as an issue to address before publication.

There is also the major underlying question about the ethics of a study when recognising that these students were (or could be, as details are not provided) suffering from serious medical conditions, but employing religious education as a treatment ("This method of treatment is to help respondents who suffer from hallucinations caused by demons or subtle beings", p.44). Part of the theoretical framework underpinning the study is the assumption that what is being addressed is"the problem of hallucinations caused by the presence of ethereal beings…" (p.43) yet it is also acknowledged that,

"Hallucinatory disorders in learning that will be emphasized in this study are due to several problems that have been identified in several schools in Malaysia. Such disorders are psychological, environmental, cultural, and sociological disorders. Psychological disorders such as hallucinatory disorders can lead to a more critical effect of bringing a person prone to Schizophrenia. Psychological disorders such as emotional disorders and psychiatric disorders. …Among the causes of emotional disorders among students are the school environment, events in the family, family influence, peer influence, teacher actions, and others."

Awang, 2022, p.41

There seem to be three ways of understanding this apparent discrepancy, which I might gloss:

  1. there are many causes of conditions that involve hallucinations, including, but not only, possession by evil or mischievousness spirits;
  2. the conditions that lead to young people having hallucinations may be understood at two complementary levels, at a spiritual level in terms of a need for inner cleansing and exorcising of subtle beings, and in terms of organic disease or conditions triggered by, for example, social and psychological factors;
  3. in the introduction the author has relied on various academic sources to discuss the nature of the phenomenon of students having hallucinations, but he actually has a working assumption that is completely different: hallucinations are due to the presence of jinn or other spirits.

I do not think it is clear which of these positions is being taken by the study's author.

  1. In the first case it would be necessary to identify which causes are present in potential respondents and only recruit those suffering possession for this study (which does not seem to have been done);
  2. In the second case, spiritual treatment would need to complement medical intervention (which would completely undermine the validity of the study as medical treatments for the underlying causes of hallucinations are likely to be the cause of hallucinations ceasing, not the tested intervention);
  3. The third position is clearly problematic in terms of academic scholarship as it is either completely incompetent or deliberately disregards academic norms that require the design of a study to reflect the conceptual framework set out to motivate it.

So, was this tested intervention implemented instead of or alongside formal medical intervention?

  • If it was alongside medical treatment, then that raises a major confound for the study.
  • Yet it would clearly be unacceptable to deny sufferers indicated medical treatment in order to test an educational intervention that is in effect a form of exorcism.

Again, it may be there are simple and adequate responses to these questions (although here I really cannot see what they might be), but unfortunately it seems the journal referees and editor did not think to ask for them.  

Findings


Results tables presented in Awang, 2022 (p.45) [Published with a creative commons licence allowing reproduction]: "Based on the findings stated in Table I show that serial respondents experienced a decline in academic achievement while they face the problem of hallucinations. In contrast to Table II which shows an improvement in students' academic achievement  after  hallucinatory  disorders  can  be  resolved." If we assume that columns in the second table have been mislabelled, then it seems the school performance of these four students suffered while they were suffering hallucinations, but improved once they recovered. From this, we can infer…?

The key findings presented concern academic performance at school. Core results are presented in tables I and II. Unfortunately these tables are not consistent as they report contradictory results for the academic performance of students before and during periods when they had hallucinations.

They can be made consistent if the reader assumes that two of the columns in table II are mislabelled. If the reader assumes that the column labelled 'before disruption' actually reports the performance 'during disruption' and that the column actually labelled 'during disruption' is something else, then they become consistent. For the results to tell a coherent story and agree with the author's interpretation this 'something else' presumably should be 'after disruption'.

This is a very unfortunate error – and moreover one that is obvious to any careful reader. (So, why was it not obvious to the referees and editor?)

As well as looking at these overall scores, other assessment data is presented separately for each of respondent 1 – respondent 4. Theses sections comprise presentations of information about grades and class positions, mixed with claims about the effects of the intervention. These claims are not based on any evidence and in many cases are conclusions about 'respondents' in general although they are placed in sections considering the academic assessment data of individual respondents. So,there are a number of problems with these claims:

  • they are of the nature of conclusions, but appear in the section presenting the findings;
  • they are about the specific effects of the intervention that the author assumes has influenced academic performance, not the data analysed in these sections;
  • they are completely unsubstantiated as no data or analysis is offered to support them;
  • often they make claims about 'respondents' in general, although as part of the consideration of data from individual learners.

Despite this, the paper passed peer-review and editorial scrutiny.

Rhetorical research?

This paper seems to be an example of a kind of 'rhetorical research' where a researcher is so convinced about their pre-existant theoretical commitments that they simply assume they have demonstrated them. Here the assumption seem to be:

  1. Recovering from suffering hallucinations will increase student performance
  2. Hallucinations are caused by jinn and devils
  3. A spiritual intervention will expel jinn and devils
  4. So, a spiritual intervention will cure hallucinations
  5. So, a spiritual intervention will increase student performance

The researcher provided a spiritual intervention, and the student performance increased, so it is assumed that the scheme is demonstrated. The data presented is certainly consistent with the assumption, but does not in itself support this scheme without evidence. Awang provides evidence that student performance improved in four individuals after they had received the intervention – but there is no evidence offered to demonstrate the assumed mechanism.

A gardener might think that complimenting seedlings will cause them to grow. Perhaps she praises her seedlings every day, and they do indeed grow. Are we persuaded about the efficacy of her method, or might we suspect another cause at work? Would the peer-reveiewers and editor of the European Journal of Education and Pedagogy be persuaded this demonstrated that compliments cause plant growth? On the evidence of this paper, perhaps they would.

This is what Awang tells readers about the analysis undertaken:

Each student  respondent  involved  in  this  study  [sic, presumably not, rather the researcher] will  use  the analysis  of  the  respondent's  performance  to  determine the effect of hallucination disorders on student achievement in secondary school is accurate.

The elements compared in this analysis are as follows: a) difference in mean percentage of achievement by subject, b) difference in grade achievement by subject and c) difference in the grade of overall student achievement. All academic results of the respondents will be analyzed as well as get the mean of the difference between the  performance  before, during, and after the  respondents experience  hallucinations. 

These  results  will  be  used  as research material to determine the accuracy of the use of the Tazkiyatun  Nafs  Module  in  solving  the  problem  of hallucinations   in   school   and   can   improve   student achievement in academic school."

Awang, 2022, p.45

There is clearly a large jump between the analysis outlined in the second paragraph here, and testing the study hypotheses as set out in the final paragraph. But the author does not seem to notice this (and more worryingly, nor do the journal's reviewers and editor).

So interleaved into the account of findings discussing "mean percentage of achievement by subject…difference in grade achievement by subject…difference in the grade of overall student achievement" are totally unsupported claims. Here is an example for Respondent 1:

"Based on the findings of the respondent's achievement in the  grade  for  Respondent  1  while  facing  the  problem  of hallucinations  shows  that  there  is  not  much  decrease  or deterioration  of  the  respondent's  grade.  There  were  only  4 subjects who experienced a decline in grade between before and  during  hallucination  disorder.  The  subjects  that experienced  decline  were  English,  Geography,  CBC, and Civics.  Yet  there  is  one  subject  that  shows  a  very  critical grade change the Civics subject. The decline occurred from grade A to grade E. This shows that Civics education needs to be given serious attention in overcoming this problem of decline. Subjects experiencing this grade drop were subjects involving  emotion,  language,  as  well  as  psychomotor fitness.  In  the  context  of  psychology,  unstable  emotional development  leads  to  a  decline  in the psychomotor  and emotional development of respondents.

After  the  use  of  the  Tazkiyatun  Nafs  module  in overcoming  this  problem,  hallucinatory  disorders  can  be overcome.  This  situation  indicates  the  development  of  the respondents  during  and  after  experiencing  hallucinations after  practicing  the  Tazkiyatun  Nafs  module.  The  process that takes place in the Tzkiyatun Nafs module can help the respondent  to  stabilize  his  emotions  and  psyche  for  the better. From the above findings there were 5 subjects who experienced excellent improvement in grades. The increase occurred in English, Malay, Geography, and Civics subjects. The best improvement is in the subject of Civic education from grade E to grade B. The improvement in this language subject  shows  that  the  respondents'  emotions  have stabilized.  This  situation  is  very  positive  and  needs  to  be continued for other subjects so that respondents continue to excel in academic achievement in school.""

Awang, 2022, p.45 (emphasis added)

The material which I show here as underlined is interjected completely gratuitously. It does not logically fit in the sequence. It is not part of the analysis of school performance. It is not based on any evidence presented in this section. Indeed, nor is it based on any evidence presented anywhere else in the paper!

This pattern is repeated in discussing other aspects of respondents' school performance. Although there is mention of other factors which seem especially pertinent to the dip in school grades ("this was due to the absence of the  respondents  to  school  during  the  day  the  test  was conducted", p.46; "it was an increase from before with no marks due to non-attendance at school", p.46) the discussion of grades is interspersed with (repetitive) claims about the effects of the intervention for which no evidence is offered.


Respondent 1Respondent 2Respondent 3Respondent 4
§: Differences in Respondents' Grade Achievement by Subject"After the use of the Tazkiyatun Nafs module in overcoming this problem, hallucinatory disorders can be overcome. This situation indicates the development of the respondents during and after experiencing hallucinations after practicing the Tazkiyatun Nafs module. The process that takes place in the Tzkiyatun Nafs module can help the respondent to stabilize his emotions and psyche for the better." (p.45)"After the use of the Tazkiyatun Nafs module as a soul purification module, showing the development of the respondents during and after experiencing hallucination disorders is very good. The process that takes place in the Tzkiyatun Nafs module can help the respondent to stabilize his emotions and psyche for the better." (p.46)"The process that takes place in the Tazkiyatun Nafs module can help the respondent to stabilize his emotions and psyche for the better" (p.46)"The process that takes place in the Tazkiyatun Nafs module can help the respondent to stabilize his emotions and psyche for the better." (p.46)
§:Differences in Respondent Grades according to Overall Academic Achievement"Based on the findings of the study after the hallucination
disorder was overcome showed that the development of the respondents was very positive after going through the treatment process using the Tazkiyatun Nafs module…In general, the use of Tazkiyatun Nafs module successfully changed the learning lifestyle and achievement of the respondents from poor condition to good and excellent achievement.
" (pp.46-7)
"Based on the findings of the study after the hallucination disorder was overcome showed that the development of the respondents was very positive after going through the treatment process using the Tazkiyatun Nafs module. … This excellence also shows that the respondents have recovered from hallucinations after practicing the methods found in the Tazkiayatun Nafs module that has been introduced.
In general, the use of the Tazkiyatun Nafs module successfully changed the learning lifestyle and achievement of the respondents from poor condition to good and excellent achievement
." (p.47)
"Based on the findings of the study after the hallucination disorder was overcome showed that the development of the respondents was very positive after going through the treatment process using the Tazkiyatun Nafs module…In general, the use of the Tazkiyatun Nafs module successfully changed the learning lifestyle and achievement of the respondents from poor condition to good and excellent achievement." (p.47)"Based on the findings of the study after the hallucination disorder was overcome showed that the development of the respondents was very positive after going through the treatment process using the Tazkiyatun Nafs module…In general, the use of the Tazkiyatun Nafs module has successfully changed the learning lifestyle and achievement of the respondents from poor condition to good and excellent achievement." (p.47)
Unsupported claims made within findings sections reporting analyses of individual student academic grades: note (a) how these statements included in the analysis of individual school performance data from four separate participants (in a case study – a methodology that recognises and values diversity and individuality) are very similar across the participants; (b) claims about 'respondents' (plural) are included in the reports of findings from individual students.

Awang summarises what he claims the analysis of 'differences in respondents' grade achievement by subject' shows:

"The use of the Tazkiyatun Nafs module in this study helped the students improve their respective achievement grades. Therefore, this soul purification module should be practiced by every student to help them in stabilizing their soul and emotions and stay away from all the disturbances of the subtle beings that lead to hallucinations"

Awang, 2022, p.46

And, on the next page, Awang summarises what he claims the analysis of 'differences in respondent grades according to overall academic achievement' shows:

"The use of the Tazkiyatun Nafs module in this study helped the students improve their respective overall academic achievement. Therefore, this soul purification module should be practiced by every student to help them in stabilizing the soul and emotions as well as to stay away from all the disturbances of the subtle beings that lead to hallucination disorder."

Awang, 2022, p.47

So, the analysis of grades is said to demonstrate the value of the intervention, and indeed Awang considers this is reason to extend the intervention beyond the four participants, not just to others suffering hallucinations, but to "every student". The peer review process seems not to have raised queries about

  • the unsupported claims,
  • the confusion of recommendations with findings (it is normal to keep to results in a findings section), nor
  • the unwarranted generalisation from four hallucination suffers to all students whether healthy or not.

Interpreting the results

There seem to be two stories that can be told about the results:

When the four students suffered hallucinations, this led to a deterioration in their school performance. Later, once they had recovered from the episodes of hallucinations, their school performance improved.  

Narrative 1

Now narrative 1 relies on a very substantial implied assumption – which is that the numbers presented as school performance are comparable over time. So, a control would be useful: such as what happened to the performance scores of other students in the same classes over the same time period. It seems likely they would not have shown the same dip – unless the dip was related to something other than hallucinations – such as the well-recognised dip after long school holidays, or some cultural distraction (a major sports tournament; fasting during Ramadan; political unrest; a pandemic…). Without such a control the evidence is suggestive (after all, being ill, and missing school as a result, is likely to lead to a dip in school performance, so the findings are not surprising), but inconclusive.

Intriguingly, the author tells readers that "student  achievement  statistics  from  the  beginning  of  the year to the middle of the current [sic, published in 2022] year in secondary schools in Northern Peninsular Malaysia that have been surveyed by researchers show a decline (Sabri, 2015 [sic])" (p.42), but this is not considered in relation to the findings of the study.

When the four students suffered hallucinations, this led to a deterioration in their school performance. Later, as a result of undergoing the soul purification module, their school performance improved.  

Narrative 2

Clearly narrative 2 suffers from the same limitation as narrative 1. However, it also demands an extra step in making an inference. I could re-write this narrative:

When the four students suffered hallucinations, this led to a deterioration in their school performance. Later, once they had recovered from the episodes of hallucinations, their school performance improved. 
AND
the recovery was due to engagement with the soul purification module.

Narrative 2'.

That is, even if we accept narrative 1 as likely, to accept narrative 2 we would also need to be convinced that:

  • a) sufferers from medical conditions leading to hallucinations do not suffer periodic attacks with periods of remission in between; or
  • b) episodes of hallucinations cannot be due to one-off events (emotional trauma, T.I.A. {transient ischaemic attack or mini-strokes},…) that resolve naturally in time; or
  • c) sufferers from medical conditions leading to hallucinations do not find they resolve due to maturation; or
  • d) the four participants in this study did not undertaken any change in life-style (getting more sleep, ceasing eating strange fungi found in the woods) unrelated to the intervention that might have influenced the onset of hallucinations; or
  • e) the four participants in this study did not receive any medical treatment independent of the intervention (e.g., prescribed medication to treat migraine episodes) that might have influenced the onset of hallucinations

Despite this study being supposedly a case study (where the expectation is there should be 'thick description' of the case and its context), there is no information to help us exclude such options. We do not know the medical diagnoses of the conditions causing the participants' hallucinations, or anything about their lives or any medical treatment that may have been administered. Without such information, the analysis that is provided is useless for answering the research question.

In effect, regardless of all the other issues raised, the key problem is that the research design is simply inadequate to test the research question. But it seems the referees and editor did not notice this shortcoming.

Alleged implications of the research

After presenting his results Awang draws various implications, and makes a number of claims about what had been found in the study:

  • "After the students went through the treatment session by using the Tazkiayatun Nafsmodule to treat hallucinations, it showed a positive effect on the student respondents. All this was certified by the expert, the student's parents as well as the  counselor's  teacher." (p.48)
  • "Based on these findings, shows that hallucinations are very disturbing to humans and the appropriate method for now to solve this problem is to use the Tazkiyatun Nafs Module." (p.48)
  • "…the use of the Tazkiyatun Nafs module while the  respondent  is  suffering  from  hallucination  disorder  is very  appropriate…is very helpful to the respondents in restoring their minds and psyche to be calmer and healthier. These changes allow  students  to  focus  on  their  studies  as  well  as  allow them to improve their academic performance better." (p.48)
  • "The use of the Tazkiyatun Nafs Module in this study has led to very positive changes there are attitudes and traits of students  who  face  hallucinations  before.  All  the  negative traits  like  irritability, loneliness,  depression,etc.  can  be overcome  completely." (p.49)
  • "The personality development of students is getting better and perfect with the implementation of the Tazkiaytun Nafs module in their lives." (p.49)
  • "Results  indicate that  students  who  suffer  from  this hallucination  disorder are in  a  state  of  high  depression, inactivity, fatigue, weakness and pain,and insufficient sleep." (p.49)
  • "According  to  the  findings  of  this study,  the  history  of  this  hallucination  disorder  started in primary  school  and  when  a  person  is  in  adolescence,  then this  disorder  becomes  stronger  and  can  cause  various diseases  and  have  various  effects  on  a  person who  is disturbed." (p.50)

Given the range of interview data that Awang claims to have collected and analysed, at least some of the claims here are possibly supported by the data. However, none of this data and analysis is available to the reader. 2 These claims are not supported by any evidence presented in the paper. Yet peer reviewers and the editor who read the manuscript seem to feel it is entirely acceptable to publish such claims in a research paper, and not present any evidence whatsoever.

Summing up

In summary: as far as these four students were concerned (but not perhaps the fifth participant?), there did seem to be a relationship between periods of experiencing hallucinations and lower school performance (perhaps explained by such factors as "absenteeism to school during the day the test was conducted" p.46) ,

"the performance shown by students who face chronic hallucinations is also declining and  declining.  This  is  all  due  to  the  actions  of  students leaving the teacher's learning and teaching sessions as well as  not  attending  school  when  this  hallucinatory  disorder strikes.  This  illness or  disorder  comes  to  the  student suddenly  and  periodically.  Each  time  this  hallucination  disease strikes the student causes the student to have to take school  holidays  for  a  few  days  due  to  pain  or  depression"

Awang, 2022, p.42

However,

  • these four students do not represent any wider population;
  • there is no information about the specific nature, frequency, intensity, etcetera, of the hallucinations or diagnoses in these individuals;
  • there was no statistical test of significance of changes; and
  • there was no control condition to see if performance dips were experienced by others not experiencing hallucinations at the same time.

Once they had recovered from the hallucinations (and it is not clear on what basis that judgement was made) their scores improved.

The author would like us to believe that the relief from the hallucinations was due to the intervention, but this seems to be (quite literally) an act of faith 3 as no actual research evidence is offered to show that the soul purification module actually had any effect. It is of course possible the module did have an effect (whether for the conjectured or other reasons – such as simply offering troubled children some extra study time in a calm and safe environment and special attention – or because of an expectancy effect if the students were told by trusted authority figures that the intervention would lead to the purification of their hearts and the healing of their hallucinatory disorder) but the study, as reported, offers no strong grounds to assume it did have such an effect.

An irresponsible journal

As hallucinations are often symptoms of organic disease affecting blood supply to the brain, there is a major question of whether treating the condition by religious instruction is ethically sound. For example, hallucinations may indicate a tumour growing in the brain. Yet, if the module was only a complement to proper medical attention, a reader may prefer to suspect that any improvement in the condition (and consequent increased engagement in academic work) may have been entirely unrelated to the module being evaluated.

Indeed, a published research study that claims that soul purification is a suitable treatment for medical conditions presenting with hallucinations is potentially dangerous as it could lead to serious organic disease going untreated. If Awang's recommendations were widely taken up in Malaysia such that students with serious organic conditions were only treated for their hallucinations by soul purification rather than with medication or by surgery it would likely lead to preventable deaths. For a research journal to publish a paper with such a conclusion, where any qualified reviewer or editor could easily see the conclusion is not warranted, is irresponsible.

As the journal website points out,

"The process of reviewing is considered critical to establishing a reliable body of research and knowledge. The review process aims to make authors meet the standards of their discipline, and of science in general."

https://www.ej-edu.org/index.php/ejedu/about

So, why did the European Journal of Education and Pedagogy not subject this submission to meaningful review to help the author of this study meet the standards of the discipline, and of science in general?


Work cited:

Notes:

1 In mature fields in the natural sciences there are recognised traditions ('paradigms', 'disciplinary matrices') in any active field at any time. In general (and of course, there will be exceptions):

  • at any historical time, there is a common theoretical perspective underpinning work in a research programme, aligned with specific ontological and epistemological commitments;
  • at any historical time, there is a strong alignment between the active theories in a research programme and the acceptable instrumentation, methodology and analytical conventions.

Put more succinctly, in a mature research field, there is generally broad agreement on how a phenomenon is to be understood; and how to go about investigating it, and how to interpret data as research evidence.

This is generally not the case in educational research – which is in part at least due to the complexity and, so, multi-layered nature, of the phenomena studied (Taber, 2014a): phenomena such as classroom teaching. So, in reviewing educational papers, it is sometimes necessary to find different experts to look at the theoretical and the methodological aspects of the same submission.


2 The paper is very strange in that the introductory sections and the conclusions and implications sections have a very broad scope, but the actual research results are restricted to a very limited focus: analysis of school test scores and grades.

It is as if as (and could well be that) a dissertation with a number of evidential strands has been reduced to a paper drawing upon only one aspect of the research evidence, but with material from other sections of the dissertation being unchanged from the original broader study.


3 Readers are told that

"All  these  acts depend on the sincerity of the medical researcher or fortune-teller seeking the help of Allah S.W.T to ensure that these methods and means are successful. All success is obtained by the permission of Allah alone"

Awang, 2022, p.43


A case study of educational innovation?

Design and Assessment of an Online Prelab Model in General Chemistry


Keith S. Taber


Case study is meant to be naturalistic – whereas innovation sounds like an intervention. But interventions can be the focus of naturalistic enquiry.

One of the downsides of having spent years teaching research methods is that one cannot help but notice how so much published research departs from the ideal models one offers to students. (Which might be seen as a polite way of saying authors often seem to get key things wrong.) I used to teach that how one labelled one's research was less important than how well one explained it. That is, different people would have somewhat different takes on what is, or is not, grounded theory, case study or action research, but as long as an author explained what they had done, and could adequately justify why, the choice of label for the methodology was of secondary importance.

A science teacher can appreciate this: a student who tells the teacher they are doing a distillation when they are actually carrying out reflux – but clearly explains what they are doing and why, will still be understood (even if the error should be pointed out). On the other hand if a student has the right label but an alternative conception this is likely to be a more problematic 'bug' in the teaching-learning system. 1

That said, each type of research strategy has its own particular weaknesses and strengths so describing something as an experiment, or a case study, if it did not actually share the essential characteristics of that strategy, can mislead the reader – and sometimes even mislead the authors such that invalid conclusions are drawn.

A 'case study', that really is a case study

I made reference above to action research, grounded theory, and case study – three methodologies which are commonly name-checked in education research. There are a vast number of papers in the literature with one of these terms in the title, and a good many of them do not report work that clearly fits the claimed approach! 2


The case study was published in the Journal for the Research Center for Educational Technology

So, I was pleased to read an interesting example of a 'case study' that I felt really was a case study (Llorens-Molina, 2009). 'Design and assessment of an online prelab model in general chemistry: A case study' offered a good example of a case study. Although, I suspect some other authors might have been tempted to describe this research differently.

Is it a bird, is it a plane; no it's…

Llorens-Molina's study included an experimental aspect. A cohort of learners was divided into two groups to allow the researcher to compare two different educational treatments; then, measurements were made to compare outcomes quantitatively. That might sound like an experiment. Moreover, this study reported an attempt to innovate in a teaching situation, which gives the work a flavour of action research. Despite this, I agree with Llorens-Molinathat that the work is best characterised as a case study.

Read about experiments

Read about action research


A case study focuses on 'one instance' from among many


What is a case study?

A case study is an in-depth examination of one instance: one example – of something for which there are many examples. The focus of a case study might be one learner, one teacher, one group of students working together on a task, one class, one school, one course, one examination paper, one text book, one laboratory session, one lesson, one enrichment programme… So, there is great variety in what kind of entity a case study is a study of, but what case studies have in common is they each focus in detail on that one instance.

Read about case study methodology


Characteristics of case study

Characteristics of case study

Case studies are naturalistic studies, which means they are studies of things as they are, not attempts to change things. The case has to be bounded (a reader of a case study learns what is in the case and what is not) but tends to be embedded in a wider context that impacts upon it. That is, the case is entangled in a context from which it could not easily be extracted and still be the same case. (Imagine moving a teacher with her class from their school to have their lesson in a university where it could be observed by researchers – it would not be 'the same lesson' as would have occurred in situ).

The case study is reported in detail, often in a narrative form (not just statistical summaries) – what is sometimes called 'thick description'. Usually several 'slices' of data are collected – often different kinds of data – and often there is a process of 'triangulation' to check the consistency of the account presented in relation to the different slices of data available. Although case studies can include analysis of quantitative data, they are usually seen as interpretive as the richness of data available usually reflects complexity and invites nuance.



Design and Assessment of an Online Prelab Model in General Chemistry

Llorens-Molina's study explored the use of prelabs that are "used to introduce and contextualize laboratory work in learning chemistry" (p.15), and in particular "an alternative prelab model, which consists of an audiovisual tutorial associated with an online test" (p.15).

An innovation

The research investigated an innovation in teaching practice,

"In our habitual practice, a previous lecture at the beginning of each laboratory session, focused almost exclusively on the operational issues, was used. From our teaching experience, we can state that this sort of introductory activity contributes to a "cookbook" way to carry out the laboratory tasks. Furthermore, the lecture takes up valuable time (about half an hour) of each ordinary two-hour session. Given this set-up, the main goal of this research was to design and assess an alternative prelab model, which was designed to enhance the abilities and skills related to an inquiry-type learning environment. Likewise, it would have to allow us to save a significant amount of time in laboratory sessions due to its online nature….

a prelab activity developed …consists of two parts…a digital video recording about a brief tutorial lecture, supported by a slide presentation…[followed by ] an online multiple choice test"

Llorens-Molina, 2009, p.16-17
Not action research?

The reference to shifting "our habitual practice" indicates this study reports practitioner research. Practitioner studies, such as this, that test a new innovation are often labelled by authors as 'action research'. (Indeed, sometimes, the fact that research is carried out by practitioners looking to improve their own practice is seen as sufficient for action research: when actually this is a necessary, but not a sufficient condition.)

Genuine action research aims at improving practice, not simply seeing if a specific innovation is working. This means action research has an open-ended design, and is cyclical – with iterations of an innovation tested and the outcomes used as feedback to inform changes in the innovation. (Despite this, a surprising number of published studies labelled as action research lack any cyclic element, simply reporting one iteration of a innovation.) Llorens-Molina's study does not have a cyclic design, so would not be well-characterised as action research.

An experimental design?

Llorens-Molina reports that the study was motivated by three hypotheses (p.16):

  • "Substituting an initial lecture by an online prelab to save time during laboratory sessions will not have negative repercussions in final examination marks.
  • The suggested online prelab model will improve student autonomy and prerequisite knowledge levels during laboratory work. This can be checked by analyzing the types and quantity of SGQ [student generated questions].
  • Student self-perceptions about prelab activities will be more favourable than those of usual lecture methods."

To test these hypotheses the student cohort was divided into two groups, to be split between the customary and innovative approach. This seems very much like an experiment.

It may be useful here to make a discrimination between two levels of research design – methodology (akin to strategy) and techniques (akin to tactics). In research design, a methodology is chosen to meet the overall aims of the study, and then one or more research techniques are selected consistent with that methodology (Taber, 2013). Experimental techniques may be included in a range of methodologies, but experiment as an overall methodology has some specific features.

Read about Research design

In a true experiment there is random assignment to conditions, and often there is an intention to generalise results to a wider population considered to be sampled in the study. Llorens-Molina reports that although inferential statistics were used to test the hypotheses, there was no intention to offer statistical generalisation beyond the case. The cohort of students was not assumed to be a sample representing some wider population (such as, say, undergraduates on chemistry courses in Spain) – and, indeed, clearly such an assumption would not have been justified.

Case study is naturalistic – but an innovation is an intervention in practice…

Case study is said to be naturalistic research – it is a method used to understand and explore things as they are, not to bring about change. Yet, here the focus is an innovation. That seems a contradiction. It would be a contradiction if the study was being carried out by external researchers who had asked the teaching team to change practice for the benefits of their study. However, here it is useful to separate out the two roles of teacher and researcher.

This is a situation that I commonly faced when advising graduates preparing for school teaching who were required to carry out a classroom based study into an aspect of their school placement practice context as part of their university qualification (the Post-Graduate Certificate in Education, P.G.C.E.). Many of these graduates were unfamiliar with research into social phenomena. Science graduates often brought a model of what worked in the laboratory to their thinking about their projects – and had a tendency to think that transferring the experimental approach to classrooms (where there are usually a large number of potentially relevant variables, many of which can not be controlled) would be straightforward.

Read 'Why do natural scientists tend to make poor social scientists?'

The Cambridge P.G.C.E. teaching team put into place a range of supports to introduce graduate preparing for teaching to the kinds of education research useful for teachers who want to evaluate and improve their own teaching. This included a book written to introduce classroom-based research that drew heavily on analysis of published studies (Taber, 2007; 2013). Part of our advice was that those new to this kind of enquiry might want to consider action research and case study as suitable options for their small-scale projects.


Useful strategies for the novice practitioner-researcher (Figure: diagram used in working with graduates preparing for teaching, from Taber, 2010)

Simplistically, action research might be considered best suited to a project to test an innovation or address a problem (e.g., evaluating a new teaching resource; responding to behavioural issues), and case study best suited to an exploratory study (e.g., what do Y9 students understand about photosynthesis?; what is the nature of peer dialogue during laboratory working in this class?) However, it was often difficult for the graduates to carry out authentic action research as the constraints of the school-based placements seldom allowed them to test successive iterations of the same intervention until they found something like an optimal specification.

Yet, they often were in a good position to undertake a detailed study of one iteration, collecting a range of different data, and so producing a detailed evaluation. That sounds like a case study.

Case study is supposed to be naturalistic – whereas innovation sounds like an intervention. But some interventions in practice can be considered the focus of naturalistic enquiry. My argument was that when a teacher changes the way they do something to try and solve a problem, or simply to find a better way to work, that is a 'natural' part of professional practice. The teacher-researcher, as researcher, is exploring something the fully professional teacher does as matter of course – seek to develop practice. After all, our graduates were being asked to undertake research to give them the skills expected to meet professional teaching standards, which

"clearly requires the teacher to have both the procedural knowledge to undertake small-scale classroom enquiry, and 'conceptual frameworks' for thinking about teaching and learning that can provide the basis for evaluating their teaching. In other words, the professional teacher needs both the ability to do her own research and knowledge of what existing research suggests"

Taber, 2013, p.8

So, the research is on something that is naturally occurring in the classroom context, rather than an intervention imported into the context in order to answer an external researcher's questions. A case study of an intervention introduced by practitioners themselves can be naturalistic – even if the person implementing the change is the researcher as well as the teacher.


If a teacher-researcher (qua researcher) wishes to enquire into an innovation introduced by the teacher-researcher (qua teacher) then this can be considered as naturalistic enquiry


The case and the context

In Llorens-Molina's study, the case was a sequence of laboratory activities carried out by a cohort of undergraduates undertaking a course of General and Organic Chemistry as part of an Agricultural Engineering programme. So, the case was bounded (the laboratory part of one taught course) and embedded in a wider context – a degree programme in a specific institution in Spain: the Polytechnic University of Valencia.

The primary purpose of the study was to find out about the specific innovation in the particular course that provided the case. This was then what is known as an intrinsic case study. (When a case is studied primarily as an example of a class of cases, rather than primarily for its own interest, it is called an instrumental case study).

Llorens-Molina recognised that what was found in this specific case, in its particular context, could not be assumed to apply more widely. There can be no statistical generalisation to other courses elsewhere. In case study, the intention is to offer sufficient detail of the case for readers to make judgements of the likely relevance to other context of interest (so-called 'reader generalisation').

The published report gives a good deal of information about the course as well as much information about how data was collected, and equally important, analysed.

Different slices of data

Case study often uses a range of data sources to develop a rounded picture of the case. In this study the identification of three specific hypotheses (less usual in case studies, which often have more open-ended research questions) led to the collection of three different types of data.

  • Students were assessed on each of six laboratory activities. A comparison was made between the prelab condition and the existing approach.
  • Questions asked by students in the laboratories were recorded and analysed to see if the quality/nature of such questions was different in the two conditions. A sophisticated approach was developed to analyse the questions.
  • Students were asked to rate the prelabs through responding to items on a questionnaire.

This approach allowed the author to go beyond simply reporting whether hypotheses were supported by the analysis, to offer a more nuanced discussion around each feature. Such nuance is not only more informative to the reader of a case study, but reflects how the researcher, as practitioner, has an ongoing commitment to further develop practice and not see the study as an end in itself.

Avoiding the 'equivalence' and the 'misuse of control groups' problems

I particularly appreciate a feature of the research design that many educational studies that claim to be experiments could benefit from. To test his hypotheses Llorens-Molina employed two conditions or treatments, the innovation and a comparison condition, and divided the cohort: "A group with 21 students was split into two subgroups, with 10 and 11 in each one, respectively". Llorens-Molina does not suggest this was based on random assignment, which is necessary for a 'true' experiment.

In many such quasi-experiments (where randomisation to condition is not carried out, and is indeed often not possible) the researchers seek to offer evidence of equivalence before the treatments occur. After all, if the two subgroups are different in terms of past subject attainment or motivation or some other relevant factor (or, indeed, if there is no information to allow a judgement regarding whether this is the case or not), no inferences about an intervention can be drawn from any measured differences. (Although that does not always stop researchers from making such claims regardless: e.g., see Lack of control in educational research.)

Another problem is that if learners are participating in research but are assigned to a control or comparison condition then it could be asked if they are just being used as 'data fodder', and would that be fair to them? This is especially so in those cases (so, not this one) where researchers require that the comparison condition is educationally deficient – many published studies report a control condition where schools students have effectively been lectured to, and no discussion work, group work, practical work, digital resources, et cetera, have been allowed, in order to ensure a stark contrast with whatever supposedly innovative pedagogy or resource is being evaluated (Taber, 2019).

These issues are addressed in research designs which have a compensatory structure – in effect the groups switch between being the experimental and comparison condition – as here:

"Both groups carried out the alternative prelab and the previous lecture (traditional practice), alternately. In this way, each subgroup carried out the same number of laboratory activities with either a prelab and previous lecture"

Llorens-Molina, 2009, p.19

This is good practice both from methodological and ethical considerations.


The study used a compensatory design which avoids the need to ensure both groups are equivalent at the start, and does not disadvantage one group. (Figure from Llorens-Molina, 2009, p.22 – published under a creative commons Attribution-NonCommercial-NoDerivs 3.0 United States license allowing redistribution with attribution)

A case of case study

Do I think this is a model case study that perfectly exemplifies all the claimed characteristics of the methodology? No, and very few studies do. Real research projects, often undertaken in complex contexts with limited resources and intractable constraints, seldom fit such ideal models.

However, unlike some studies labelled as case studies, this study has an explicit bounded case and has been carried out in the spirit of case study that highlights and values the intrinsic worth of individual cases. There is a good deal of detail about aspects of the case. It is in essence a case study, and (unlike what sometimes seems to be the case [sic]) not just called a case study for want of a methodological label. Most educational research studies examine one particular case of something – but (and I do not think this is always appreciated) that does not automatically make them case studies. Because it has been both conceptualised and operationalised as a case study, Llorens-Molina's study is a coherent piece of research.

Given how, in these pages, I have often been motivated to call out studies I have read that I consider have major problems – major enough to be sufficient to undermine the argument for the claimed conclusions of the research – I wanted to recognise a piece of research that I felt offered much to admire.


Work cited:

Notes:

1 I am using language here reflecting a perspective on teaching as being based on a model (whether explicit or not) in the teacher's mind of the learners' current knowledge and understanding and how this will respond to teaching. That expects a great deal of the teacher, so there are often bugs in the system (e.g., the teacher over-estimates prior knowledge) that need to be addressed. This is why being a teacher involves being something of a 'learning doctor'.

Read about the learning doctor perspective on teaching


2 I used to teach sessions introducing each of these methodologies when I taught on an Educational Research course. One of the class activities was to examine published papers claiming the focal methodology, asking students to see if studies matched the supposed characteristics of the strategy. This was a course with students undertaking a very diverse range of research projects, and I encouraged them to apply the analysis to papers selected because they were of particular interest and relevance to to their own work. Many examples selected by students proved to offer poor match between claimed methodology and the actual research design of ther study!

What shape should a research thesis be?

Being flummoxed by a student question was the inspiration for a teaching metaphor

Keith S. Taber

An artist's impression of the author being lost for words (Image actually by Christian Dorn from Pixabay)

In my teaching on the 'Educational Research' course I used to present a diagram of a shape something like the lemniscate – the infinity symbol, ∞ – and tell students that was the shape their research project and thesis should take. I would suggest this was a kind of visual metaphor.

This may seem a rather odd idea, but I was actually responding to a question I had previously been asked by a student. Albeit, this was a rather deferred response.

'Lost for words'

As a teacher one gets asked all kinds of questions. I've often suggested that preparing for teaching is more difficult than preparing for an examination. When taking an examination it is usually reasonable to assume that the examination question have been set by experts in the subject.

A candidate therefore has a reasonable chance of foreseeing at least the general form of the questions that night asked. There is usually a syllabus or specification which gives a good indication of the subject matter and the kinds of skills expected to be demonstrated – and usually there are past papers (or, if not, specimen papers) giving examples of what might be asked. The documentation reflects some authority's decisions about the bounds of the subject being examined (e.g., what counts as included in 'chemistry' or whatever), the selection of topics to be included in the course, and the level of treatment excepted at this level of study (Taber, 2019). Examiners may try to find novel applications and examples and contexts – but good preparation should avoid the candidate ever being completely stumped and having no basis to try to develop a response.

However, teachers are being 'examined' so to speak, by people who by definition are not experts and so may be approaching a subject or topic from a wide range of different perspectives. In science teaching, one of the key issues is how students do not simply come to class ignorant about topics to be studied, but often bring a wide range of existing ideas and intuitions ('alternative conceptions') that may match, oppose, or simply be totally unconnected with, the canonical accounts.

Read about alternative conceptions

This can happen in any subject area. But a well prepared teacher, even if never able to have ready answers to all question or suggestions learners might offer, will seldom be lost for words and have no idea how to answer. But I do recall an occasion when I was indeed flummoxed.

I was in what is known as the 'Street' in the main Faculty of Education Building (the Donald McIntyre Building) at Cambridge at a time when students were milling about as classes were just ending and starting. Suddenly out of the crowd a student I recognised from teaching the Educational Research course loomed at me and indicated he wanted to talk. I saw he was clutching a hardbound A4 notebook.

We moved out of the melee to an area where we could talk. He told me he had a pressing question about the dissertation he had to write for his M.Phil. programme.

"What should the thesis look like?"

His question sounded simple enough – "What should the thesis look like?"

Now at one level I had an answer – it should be an A4 document that would be eventually bound in blue cloth with gold lettering on the spine. However, I was pretty sure that was not what he meant.

What does a thesis look like?

I said I was not sure what he meant. He opened his notebook at a fresh double page and started sketching, as he asked me: 'Should the thesis look like this?' as he drew a grid on one page of his book. Whilst I was still trying to make good sense of this option, he started sketching on the facing page. "Or, should it look like this?"

I have often thought back to this exchange as I was really unsure how to respond. He seemed no more able to explain these suggestions than I was able to appreciate how these representations related to my understanding of the thesis. As I looked at the first option I was starting to think in terms of the cells as perhaps being the successive chapters – but the alternative option seemed to undermine this. For, surely, if the question was about whether to have 6 or 8 chapters – a question that has no sensible answer in abstract without considering the specific project – it would have been simpler just to pose the question verbally. Were the two columns (if that is what they were) meant to be significant? Were the figures somehow challenging the usual linear nature of a thesis?

I could certainly offer advice on structuring a thesis, but as a teacher – at least as the kind of constructivist teacher I aspired to be – I failed here. I was able to approach the topic from my own perspective, but not to appreciate the student's own existing conceptual framework and work from there. This if of course what research suggests teachers usually need to do to help learners with alternative conceptions shift their thinking.

Afterwards I would remember this incident (in a way I cannot recall the responses I gave to student questions on hundreds of other occasions) and reflect on it – without ever appreciating what the student was thinking. I know the student had a background in a range of artistic fields including as a composer – and I wondered if this was informing his thinking. Perhaps if I had studied music at a higher level I might have appreciated the question as being along the lines of, say, whether the should the thesis be, metaphorically speaking, in sonata form or better seen as a suite?

I think it was because the question played on my mind that later, indeed several years later, I had the insight that 'the thesis' (a 'typical' thesis) did not look like either of those rectangular shapes, but rather more like the leminscape:

A visual metaphor for a thesis project (after Taber, 2013)

The focus of a thesis

My choice of the leminscate was because its figure-of-eight nature made it two loops which are connected by a point – which can be seen as some kind of focal point of the image:

A thesis project has a kind of focal point

This 'focus' represents the research question or questions (RQ). The RQ are not the starting point of most projects, as good RQ have to be carefully chosen and refined, and that usually take a lot of reading around a topic.

However, they act as a kind of fulcrum around which the thesis is organised because the sections of the thesis leading up to the RQ are building up to them – offering a case for why those particular questions are interesting, important, and so-phrased. And everything beyond that point reflects the RQ, as the thesis then describes how evidence was collected and analysed in order to try to answer the questions.

Two cycles of activity

A thesis project cycles through expansive and focusing phases

Moreover, the research project described in a thesis reflects two cycles of activity.

The first cycle has an expansive phase where the researcher is reading around the topic, and exposing themselves to a wide range of literature and perspectives that might be relevant. Then, once a conceptual framework is developed from this reading (in the literature review), the researcher focuses in, perhaps selecting one of several relevant theoretical perspectives, and informed by prior research and scholarship, crystallises the purpose of the project in the RQ.

Then the research is planned in order to seek to answer the RQ, which involves selecting or developing instruments, going out and collecting data – often quite a substantive amount of data. After this expansive phase, there is another focusing stage. The collected data is then processed into evidence – interpreted, sifted, selected, summarised, coded and tallied, categorised – and so forth – in analysis. The data analysis is summarised in the results, allow conclusions to be formed: conclusions which reflect back to the RQ.

The lemniscate, then, acts a simple visual metaphor that I think acts as a useful device for symbolising some important features of a research project, and so, in one sense at least, what a thesis 'looks' like. If any of my students (or readers) have found this metaphor useful then they have benefited from a rare occasion when a student question left me lost for words.

Work cited: