How to avoid birds of prey

…by taking refuge in the neutral zone


Keith S. Taber


Fact is said to be stranger than (science) fiction

Regular viewers of Star Trek may be under the impression that it is dangerous to enter the neutral zone between the territories claimed by the United Federation of Planets and that of the Romulan Empire in case any incursion results in an attack by a Romulan Bird of Prey.


A bird of prey (with its prey?)
(Image by Thomas Marrone, used by permission – full-size version at the source site here)


However, back here on earth, it may be that entering the neutral zone is actually a way of avoiding an attack by a bird of prey


A bird of prey (with its prey). Run rabbit, run rabbit…into the neutral zone
(Image by Ralph from Pixabay)

At least, according to the biologist Jakob von Uexküll

"All the more remarkable is the observation that a neutral zone insinuates itself between the nest and the hunting ground of many raptors, a zone in which they seize no prey at all. Ornithologists must be correct in their assumption that this organisation of the environment was made by Nature in order to keep the raptors from seizing their own young. If, as they say, the nestling becomes a branchling and spends its days hopping from branch to branch near the parental nest, it would easily be in danger of being seized by mistake by its own parents. In this way, it can spend its days free of danger in the neutral zone of the protected area. The protected area is sought out by many songbirds as a nesting and incubation site where they can raise their young free of danger under the protection of the big predator."

Uexküll, 1934/2010

This is a very vivid presentation, but is phrased in a manner I thought deserved a little interrogation. It should, however, be pointed out that this extract is from the English edition of a book translated from the original German text (which itself was originally published almost a century ago).

A text with two authors?

Translation is a process of converting a text from one natural language to another, but every language is somewhat unique regarding its range of words and word meanings. That is, words that are often considered equivalent in different language may have somewhat different ranges of application in those languages, and different nuances. Sometimes there is no precise translation for a word, and a single word in one language may have several near-equivalents in another (Taber, 2018). Translation therefore involves interpretation and creative choices.

So, translation is a skilled art form, and not simply something that can be done well by algorithmically applying suggestions in a bilingual dictionary. A good translation of an academic text not only requires someone fluent in both languages, but also someone having a sufficient understanding of the topic to translate in the best way to convey the intended meaning rather than simply using the most directly equivalent words. A sequence of the most equivalent individual words may not give the best translation of a sentence, and indeed when translating idioms may lead to a translation with no obvious meaning in the target language. It is worth bearing in mind that any translated text has (in effect) two authors, and reflects choices made by the translator as well as the original author.

Read about the challenges of translation in research writing

I am certainly not suggesting there is anything wrong with the translation of Uexküll's text, but it should be born in mind I am commenting on the English language version of the text.

A neutral zone insinuates itself

No it does not.

The language here is surely metaphorical, as it implies a deliberate action by the neutral zone. This seems to anthropomorphise the zone as if it is a human-like actor.

Read about anthropomorphism

The zone is a space. Moreover, it is not a space that is in any way discontinuous with the other space surrounding it – it is a human conception of a region of space with imagined boundaries. The zone is not a sentient agent, so it can not insinuate itself.

Ornithologists must be correct

Science develops theoretical knowledge which is tested against empirical evidence, but is always (strictly) provisional in that it should be open to revisiting in the light of further evidence. Claims made in scientific discourse should therefore be suitable tentative. Perhaps

  • ornithologists seem to be correct in suggesting…, or
  • it seems likely that ornithologists were correct when they suggested…or even
  • at present our best understanding reflects the suggestions made by ornithologists that...

Yet a statement that ornithologists must be correct implies a level of certainty and absoluteness that seems inconsistent with a scientific claim.

Read about certainty in accounts of science

The environment was made by Nature in order to…

This phrasing seems to personify Nature as if 'she' is a person. Moreover, this (…in order to…) suggests a purpose in nature. This kind of teleological claim is often considered inappropriate in science as it suggests natural events occur according to some pre-existing plan rather than unfolding according to natural laws. 1 If we consider something happens to achieve a purpose we seem to not need to look for a mechanism in terms of (for example) forces (or entropy or natural selection or…).

Read about personification of nature

Read about teleology in science

Being seized by mistake

We can understand that it would decrease the biological fitness of a raptor to indiscriminately treat its own offspring as potential food. There are situations when animals do eat their young, but clearly any species that's members committed considerable resources to raising a small number of young (e.g., nest building, egg incubation) but were also regular consumers of those young would be at a disadvantage when it came to its long-term survival.

So, in terms of what increases a species' fitness, avoiding eating your own children would help. If seeking a good 'strategy' to have descendants, then, eating offspring would be a 'mistake'. But the scientific account is not that species, or individual members of a species, seek to deliberately adopt a strategy to have generations of descendants: rather behaviour that tends to lead to descendants is self-selecting.

Just because humans can reflect upon 'our children's children's, children', we cannot assume that other species even have the vaguest notions of descendants. (And the state of the world – pollution, deforestation, habitat destruction, nuclear arsenals, soil degradation, unsustainable use of resources, etceterastrongly suggests that even humans who can conceptualise and potentially care about their descendants have real trouble making that the basis for rational action.)


Even members of the very rare species capable of conceptualising a future for their offspring struggle to develop strategies taking the well-being of future generations into account.
(Image: cover art for 'To our children's children's children' {The Moody Blues}).


Natural selection is sometimes seen as merely a tautology as it seems to be a theory that explains the flourishing of some species (and not others) in terms that they have the qualities to flourish! But this is to examine the wrong level of explanation. Natural selection explains in general terms why it is that in a particular environment competing species will tend to survive and leave offspring to different extents. (Then within that general framework, specific arguments have to be made about why particular features or behaviours contribute to differential fitness in that ecological context.)

Particular evolved behaviours may be labelled as 'strategies' by analogy with human strategies, but this is purely a metaphor: the animal is following instincts, or sometimes learned behaviours, but is not generally following a consciously considered plan intended to lead to some desired outcome in the longer term.

But a reader is likely to read about a nestling being "in danger of being seized by mistake by its own parents" as the birds themselves making a mistake – which implies they have a deliberate plan to catch food, while excluding their own offspring from the food category, and so intended to avoid treating their offspring as prey. That is, it is implied that birds of prey are looking to avoid eating their own, but get it wrong.

Yet, surely, birds are behaving instinctively, and not conceptualising their hunting as a means of acquiring nutrition, where they should discriminate between admissible prey and young relatives. Again this seems to be anthropomorphism as it treats non-human animals as if their have mental experiences and thought processes akin to humans: "I did not mean to eat my child, I just failed to recognise her, and so made a mistake".

The protected area is sought out

Similarly, the songbirds also behave instinctively. They surely do not 'seek out' the 'protected' area around the nest of a bird of prey. There must be a sense in which they 'learn' (over many generations, perhaps) that they need not fear the raptors when they are near their own nests but it seems unlikely a songbird conceptualises any of this in a way that allows them to deliberately (that is, with deliberation) seek out the neutral zone.

In terms of natural selection, a songbird that has no fear of raptors and so does not seek to avoid or hide or flee from them would likely be at a disadvantage, and so tend to leave less offspring. Similarly, a songbird that usually avoided birds of prey, but nested in the neutral zone, would have a fitness advantage if other predators (small cats say) kept clear of the area. The bird would not have to think "hey, I know raptors are generally a hazard, but I'll be okay here as I'm close enough to be in the zone where they do not hunt", as long as the behaviour was heritable (and there was initially variation in the extent to which individuals behaved that way) – as natural selection would automatically lead to it becoming common behaviour.

(In principle, the bird could be responding to some cue in the environment that was a reliable but indirect indicator they were near a raptor nesting site. For example, perhaps building a nest very close to a location where there is a regular depositing of small bones on the ground gives an advantage, so this behaviour increases fitness and so is 'selected'.)

Under the protection of the big predator

Why are the songbirds under the protection of the raptors? Perhaps because other potential predators do not come into the neutral zone as they are vulnerable when approaching this area, even if they would be safe once inside. Again, if this is so, it surely does not reflect a conscious conceptualisation of the neutral zone.

For example, a cat that preys on small birds would experience a different 'unwelt' from the bird. A small songbird with a nest where it has young experiences the surrounding space differently to a cat (already a larger animal so experiencing the world at a different scale) that ranges over a substantial territory. Perhaps the songbird perceives the neutral zone as a distinct space, whereas to the cat it is simply an undistinguished part of a wider area where the raptors are regularly seen.

Or, perhaps, for the smaller predator, the area around the neutral zone offers too little cover to risk venturing into the zone. (Again, this does not mean a conscious thinking process along the lines "I'd be safe once I was over there, but I'm not sure I'd make it there as I could easily be seen moving between here and there", but could just be an inherited tendency to keep under cover.)

The birds of prey themselves will not take the songbirds, so the smaller birds are protected from them in the zone, but if this is simply an evolved mechanism that prevents accidental 'infanticide' this can hardly be considered as other birds being under the protection of the birds of prey. Perhaps the birds of prey do scare away other predators – but, if so, this is in no sense a desired outcome of a deliberate policy adopted by the birds of prey because they want to protect their more vulnerable neighbours.

One could understand how the birds of prey might hypothetically have evolved behaviour of not preying on smaller birds (which might include their own offspring) near their nest, but would still attack smaller predators that might threaten their own chicks. In that scenario 2, the birds of prey might have indeed protected nearby songbirds from potential predators (even if only incidentally), but this does not apply if, as Uexküll suggests, "they seize no prey at all" in the neutral zone.

Again the, 'under the protection of the big predator' seems to anthropomorphise the situation and treat the birds of prey as if they are acting deliberately to protect songbirds, and so this phrasing needs to be understood metaphorically.

Does language matter?

Uexküll's phrasing offers an engaging narrative which aids in the communication of the idea of the neutral zone to his readers. (He is skilled in making the unfamiliar familiar.) It is easier to understand an abstract idea if it seems to reflect a clear purpose or it can be understood in terms of human ways of thinking and acting, for example:

  • it is important to keep your children safe
  • it is good to look out for your neighbours

But we know that science learners readily tend to accept explanations that are teleological and/or anthropomorphic, and that sometimes (at least) this acts as an impediment to learning the scientific accounts based on natural principles and mechanisms.

Therefore it is useful for science teachers in particular to be alert to such language so they can at least check that learners are seeing beyond the metaphor and not mistaking a good story for a scientific account.


Work cited:

Notes:

1 Many people, including some scientists, do believe the world is unfolding according to a pre-ordained plan or scheme. This would normally be considered a matter of religious faith or at least a metaphysical commitment.

The usual stance taken in science ('methodological naturalism'), however, is that scientific explanations must be based on scientific principles, concepts, laws, theories, etcetera, and must not call upon any supernatural causes or explanations. This need not exclude a religious faith in some creator with a plan for the world, as long as the creator is seen to have set up the world to unfold through natural laws and mechanisms. That is, faith-based and scientific accounts and explanations may be considered to work at different levels and to be complementary.

Read more about the relationship between science and religion


2 That this does not seem to be the case might reflect how a flying bird perceives prey – if it has simply evolved to swoop upon and take any object in a certain size range {that we might explain as small enough to be taken, but not so small as not to repay the effort} that matches a certain class of movement pattern {that we might interpret as moving under its own direction and so being animate} then the option of avoiding smaller birds but taking other prey would not be available.

After all, studies show parent birds will try and feed the most simple representations of a hatchling's open beak – suggesting they do not perceive the difference between their own children and crude models of an open bird mouth.


The general form of a chick's open mouth (as shown by these hatchlings) is enough to trigger feeding behaviour in adult birds.
(Image by Tania Van den Berghen from Pixabay )

Uexküll himself reported that,

"…a very young wild duck was brought to me; it followed me every step. I had the impression that it was my boots that attracted it so, since it also ran occasionally after a black dachshund. I concluded from this that a black moving object was sufficient to replace the image of its mother…"

Uexküll, 1934/2010

(A year later, Lorentz would publish his classic work on imprinting which reported detailed studies of the same phenomenon.)


So who's not a clever little virus then?

The COVID-19 virus is not a clever or sneaky virus (but it is not dumb either) 1

Keith S. Taber

Image by Syaibatul Hamdi from Pixabay 

One of the things I have noticed in recent news reports about the current pandemic is the tendency to justify our susceptibility to the COVID-19 coronavirus by praising the virus. It is an intelligent and sneaky foe, and so we have to outwit it.

But no, it is not. It is a virus. It's a tiny collection of nucleic material packaged in a way that it can get into the cells which contain the chemical resources required for the virus to replicate. It is well suited to this, but there is nothing intelligent about the behaviour. (The virus does not enter the cell to reproduce any more than an ice cube melts to become water; or a hot cup of coffee radiates energy to cool down; or a toddler trips over to graze its knee rather than because gravity acts on it.) The virus is not clever nor sneaky. That would suggest it can adapt its behaviour, after reflecting upon feedback from its interactions with the environment. It cannot. Over generations viruses change – but with a lot of variations that fail to replicate (the thick ones in the family?)

Yet any quick internet search finds references to the claimed intellectual capacities of these deadly foes. Now of course an internet search can find references to virtually anything – but I am referring to sites we might expect to be authoritative, or at least well-informed. And this is not just a matter of a hasty response to the current public health emergency as it is not just COVID 19, but, it seems, viruses generally that are considered intellectually superior.

Those smart little viruses

The site Vaccines Today has a headline in a posting from 2014, that "Viruses are 'smart', so we must be smarter", basing its claims on a lecture by Colin Russell, Royal Society University Research Fellow at Cambridge University. It reports that "Dr Russell says understanding how 'clever' viruses are can help us to outsmart them". (At least there are 'scare quotes' in some of these examples.)

An article from 2002 in an on-line journal has the title "The contest between a clever virus and a facultatively clever host". Now I have moaned about the standard of many new internet journals, but this is the Journal of the Royal Society of Medicine, and the article is in volume 95, so I think it is safe to apply the descriptor 'well-established' to this journal.

A headline in Science news for Students (published by Society for Science & the Public) from 2016 reads "Sneaky! Virus sickens plants, but helps them multiply". I am sure it would not take long to find many other examples. An article in Science refers to a "nasty flu virus".

Sneaky viruses

COVID-19 is a sneaky virus according to a doctor writing in the Annals of Internal Medicine. Quite a few viruses seem to be sneaky – the the human papillomavirus is according to an article in the American Journal of Bioethics. The World Health Organisation considers that a virus that causes swine fever, H1N1, is sneaky according to an article in Systematic Reviews in Pharmacy, something also reported by the BMJ.

There are many references in the literature to clever viruses, such as Epstein‐Barr virus according to a piece in the American Journal of Transplantation. The Hepatitis C virus is clever according to an article in Clinical Therapeutics.

Science communication as making the unfamiliar, familiar

Science communication is a bit like teaching in that the purpose of communication is often to be informative (rather than say, social cohesion, like a lot of everyday conversation {and, by the way,it was another beautiful day here in Cambridgeshire today, blue sky – was it nice where you are?}) and indeed to make the unfamiliar, familiar. Sometimes we can make the unfamiliar familiar by showing people the unfamiliar and pointing it out. 'This is a conical flask'. Often, however, we cannot do that – it is hard to show someone hyperconjugation or hysteresis or a virus specimen. Then we resort to using what is familiar, and employing the usual teacher tricks of metaphor, analogy, simile, modelling, graphics, and so forth. What is familiar to us all is human behaviour, so personification is a common technique. What the virus is doing, we might suggest, is hijacking the cell's biochemical machinery, as if it is a carefully planned criminal operation.

Strong anthropomorphism and dead metaphors

This is fine as far as it goes – that is, if we use such techniques as initial pedagogic steps, as starting points to develop scientific understanding. But often the subsequent stage does not happen. Perhaps that is why there are so many dead metaphors in the language – words introduced as metaphors, which over time have simple come to be take on a new literal meaning. Science does its fair share of borrowing – as with charge (when filling a musket or canon). Dead metaphors are dead (that is metaphorical, of course, they were never actually alive) because we simply fail to notice them as metaphors any more.

There are probably just as many references to 'clever viruses' referring to computer viruses as to microbes – which is interesting as computer viruses were once only viruses metaphorically, but are now accepted as being another type of virus. They have become viruses by custom and practice, and social agreement.

Whoever decided to first refer to the covalent bond in terms of sharing presumably did not mean this in the usual social sense, but the term has stuck. The problem in education (and so, presumably, public communication of science) is that once people think they have an understanding, an explanation that works for them, they will no longer seek a more scientific explanation.

So if the teacher suggests an atom is looking for another electron (a weak form of anthropomorphism, clearly not meant to be taken too seriously – atoms are not entities able to look for anything) then there is a risk that students think they know what is going on, and so never seek any further explanation. Weak anthropomorphism becomes strong anthropomorphism: the atom (or virus) behaves like a person because it has needs and desires just like anyone else.

Image by Tumisu from Pixabay 

Why does it matter?

Perhaps in our current situation this is not that important – the public health emergency is a more urgent issue than the public understanding of the science. But it does matter in the long term. Viruses are not clever – they have evolved over billions of years, and a great many less successful iterations are no longer with us. The reason it matters is because evolution is often not well understood.

As an article in Evolution News and Science Today (a title that surely suggests a serious science periodical about evolution) tells us again that "Viruses are, to all appearances, very clever little machines" and asks "do they give evidence of intelligent design" (that is, rather than Darwinian natural selection, do they show evidence of having an intelligent designer?) After exploring some serious aspects of the science of viruses, the article concludes: "So it seems that viruses are intelligently designed" – that is, a position at odds with the scientific understanding that is virtually a consensus view based on current knowledge. Canonical science suggests that natural processes are able to explain evolution. But these viruses are so clever they must surely have been designed (Borg technology, perhaps?)

This is why I worry when I hear that viruses are these intelligent, deliberate agents that are our foes in some form of biological warfare. It is a dangerous way of thinking. So, I'm concerned when I read, for example, that the cytomegalovirus is not just a clever virus but a very clever virus. Indeed, according to an article in Cell Host & Microbe "CMV is a very clever virus that knows more about the host immune system and cell biology than we do". Hm.

(Read about 'anthropomorphism')

Footnote:

1. The subheading was amended on 4th October 2021, after it was quite rightly pointed out to me that the original version, "COVID-19 is not a clever or sneaky virus (but it is not dumb either)", incorrectly conflated the disease with the virus.