Is the Big Bang Theory mistaken?

Not science fiction, but fictional science


Keith S. Taber


we are made of particles that have existed since the moment the universe began…those atoms travelled 14 billion years through time and space

The Big Bang Theory (but not quite the big bang theory).

What is the Big Bang Theory?

The big bang theory is a theory about the origin and evolution of the universe. Being a theory, it is conjectural, but it is the theory that is largely taken by scientists as our current best available account.

According to big bang theory, the entire universe started in a singularity, a state of infinite density and temperature, in which time space were created as well as matter. As the universe expanded it cooled to its present state – some, about, 13.8 billion years later.


Our current best understanding of the Cosmos is that the entire Universe was formed in a 'big bang'
(Image by Gerd Altmann from Pixabay)

The term 'big bang' was originally intended as a kind of mockery – a sarcastic description of the notion – but the term was adopted by scientists, and has indeed become widely used in general culture.

Which brings me to 'The Big Bang Theory', which is said to have been the longest ever running sitcom ('situation comedy') – having been in production for longer than even 'Friends'.


The Big Bang Theory: Not science fiction, but fictional science? (Five of these characters have PhDs in science: one 'only' has a master's degree in engineering.)

A situation comedy is set around a situation. The situation was that two Cal Tech physicists are sharing an apartment. Leonard (basically a nice guy, but not very successful with women) is flatmate to Sheldon, a synaesthete, and kind of savant (a device on which to lever much of the humour) – a genius with an encyclopaedic knowledge of most areas of science but a deficient 'theory of mind' such that he lacks

  • insight into others, and so also
  • empathy, and
  • the ability to tell when people are using humour or being sarcastic to him.

If most physicists were like Sheldon we could understand why the big bang theory is still called the big bang theory even though the term was intended to be facetious. The show writers claim that Sheldon was not deliberately written to be on the autistic spectrum, but he tends to take statements literally: when it is suggested that he is crazy, he responds that he knows he is not as his mother had him tested as a child.


Sheldon (at right, partially in shot) has been widely recognised by viewers as showing signs of high-functioning Autism or Aspergers syndrome. (Still from The Big Bang Theory)

These guys hang out with Raj (Rajesh), an astrophysicist and Cambridge graduate so shy he is unable to speak to women, or indeed in their presence (presumably not a problem inherited from his father who is is a successful gynaecologist in India), and an engineer, Howard, who to my viewing is just an obnoxious creep with no obvious redeeming qualities. (But then I've not seen the full run.) When Howard becomes a NASA astronaut, he is bullied by the other astronauts, and whilst bullying is never acceptable, it is difficult to be too judgemental in his case.

This group are scientists, and they are 'nerds'. They watch science fiction and superhero movies, buy comic books and action figures, play competitive board games and acquire all the latests technical gadgets. And, apart from Sheldon (who has a strong belief in following a principled rigorous regime of personal hygiene that makes close contact with other humans seem repulsive) they try, and largely fail, to attract women.

In case this does not seem sufficiently stereotypical, the situation is complete when a young woman moves into in the flat opposite Leonard and Sheldon: Penny is the 'hot' new neighbour, who comes across as a 'dumb blonde' (she wants to be an actress – she is actually a waitress whilst she works at that), something of a hedonist, and not having the slightest knowledge of, or interest in, science. Penny's plan in life is to become a movie star, and her back-up plan is to become a television star.

If Sheldon and his friends tend to rather fetishise science and see it as inherently superior to other ways of engaging in the world, then Penny seems to reflect the other side of 'the two cultures' of C. P. Snow's famous lecture/essay that described an arts-science divide in mid-twentieth century British public life. That is, not only an acknowledged ignorance of scientific matters, but an ignorance that is almost worn as a badge of honour. Penny, of course, actually has a good deal of knowledge about many areas of culture that our 'heroes' are ignorant of.

Initially, Penny is the only lead female character in the show. This creates considerable ambiguity in how we are expected to see the show's representations of scientists during the early series. Is the viewer meant to be sharing their world where women are objects of recreation and sport and a distraction from the important business of the scientific quest? Or, is the audience being asked to laugh at these supposedly highly intelligent men who actually have such limited horizons?

Sheldon: I am a physicist. I have a working knowledge of the entire universe and everything it contains.

Penny. Who's Radiohead?

[pause]

Sheldon: I have a working knowledge of important things in the universe.


Penny has no interest in science

So, the premise is: can the nerdy, asthmatic, short-sighted, physicist win over the pretty, fun-loving, girl-next-door who is clearly seen to be 'out of his league'.

Spoiler alert

Do not read on if you wish to watch the show and find out for yourself.  ðŸ˜‰

A marriage made in the heavens?

I recently saw an episode in series n (where n is a large positive integer) where Leonard and Penny decided to go to Las Vagas and get married. Leonard said he had written his own marriage vows – and it was these that struck me as problematic. My complaint was nothing to do with love and commitment, but just about physics.


Cal Tech physicist Leonard Hofstadter (played by Johnny Galecki) wrote his own vows for marriage to Penny (Kaley Cuoco) in 'The Big Bang Theory'

A non-physical love?

I made a note of Leonard's line:

"Penny, we are made of particles that have existed since the moment the universe began. I like to think those atoms travelled 14 billion years through time and space to create us so that we could be together and make each other whole."

Leonard declares his love

Sweet. But wrong.

Perhaps Leonard had been confused by the series theme music, the 'History of Everything', by the band Barenaked Ladies. The song begins well enough:

"Our whole universe was in a hot dense state

Then nearly fourteen billion years ago, expansion started…"

Lyrics to History of Everything (The Big Bang Theory Theme)

but in the second verse we are told

"As every galaxy was formed in less time than it takes to sing this song.

A fraction of a second and the elements were made."

Lyrics to History of Everything (The Big Bang Theory Theme)

which seems to reflect a couple of serious alternative conceptions.

So, the theme song seems to suggest that once the big bang had occurred, "nearly fourteen billion years ago", the elements were formed in a matter of seconds, and the galaxies in a matter of minutes. Leonard goes further, and suggests the atoms that he and Penny are comprised of have existed since "the moment the universe began". This is all contrary to the best understanding of physicists.

Surely Leonard, who defended his PhD thesis on particle physics, would know more about the canonical theories about the formation of those particles? (If not, he could ask Raj who once applied for a position in stellar evolution.)

The "hot dense state" was so hot that no particles could have condensed out. Certainly, some particles began to appear very soon after the big bang, but for much of the early 'history of everything' the only atoms that could exist were of the elements hydrogen, helium and lithium – as only the nuclei of these atoms were formed in the early universe.

The formation of heavier elements – carbon, oxygen, silicon and all the rest – occurred in stars – stars that did not exist until considerable cooling from the hot dense state had occurred. (See for example, 'A hundred percent conclusive science. Estimation and certainty in Maisie's galaxy'.) Most of the matter comprising Leonard, Penny, and the rest of us, does not reflect the few elements formed in the immediate aftermath of the big bang, but heavier elements that were formed billions of years later in stars that went supernovae and ejected material into space. 1 As has often been noted, we are formed from stardust.

"…So don't forget the human trial,
The cry of love, the spark of life, dance thru the fire

Stardust we are
Close to divine
Stardust we are
See how we shine"

From the lyrics to 'Stardust we are' (The Flower Kings – written by Roine Stolt and Tomas Bodin)

Does it matter – it is only pretend

Of course The Big Bang Theory (unlike the big bang theory) is not conjecture, but fiction. So, does it matter if it gets the science wrong? The Big Bang Theory is not meant to be science fiction, but a fiction that uses science to anchor it into a situation that will allow viewers to suspend disbelief.

Leonard is a believable character, but Sheldon is an extreme outlier. Howard and Raj are caricatures, exaggerations, as indeed are Amy (neurobiologist) and Bernadette (microbiologist) the other core characters introduced later.

But the series creators and writers seem to have made a real effort at most points in the show to make the science background authentic. Dialogue, whiteboard contents, projects, laboratory settings and the like seem to have been constructed with great care so that the scientifically literate viewer is comfortable with the context of the show. This authentic professional context offers the credible framework within which the sometimes incredible events of the characters' lives and relationships do not seem immediately ridiculous.

In that context, Leonard getting something so wrong seems incongruent.

Then again, he is in love, so perhaps his vows are meant to tell the scientifically literate viewer that there is a greater truth than even science – that in matters of the heart, poetic truth trumps even physics?

A Marillion song tells us:

A wise man once wrote
That love is only
An ancient instinct
For reproduction
Natural selection
A wise man once said
That everything could be explained
And it's all in the brain

Lyrics from 'This is the 21st Century' (Hogarth)

But as the same song asks: "where is the wisdom in that?"


Source cited:
  • Snow, C. P. (1959/1998). The Rede Lecture, 1959: The two cultures. In The Two Cultures (pp. 1-51). Cambridge University Press.

Note:

1 I was tempted to write 'most of the atoms'. Certainly most of the mass of a person is made up of atoms 2 that were formed a long time after the big bang. However, in terms of numbers of atoms, there are more of the (lightest) hydrogen atoms than of any other element: we are about 70% water, and water comprises molecules of H2O. So, that is getting close to half the atoms in us before we consider all the hydrogen in the fats and proteins and so forth.


2 That, of course, assumes the particles we are made of are atoms. Actually, we are comprised chemically of molecules and ions and relatively very, very few free atoms (those that are there are accidentally there in the sense they are not functional). No discrete atoms exist within molecules. So, to talk of the hydrogen atoms in us is to abstract the atoms from molecules and ions.

Leonard confuses matters (and matter) by referring initially to particles (which could be nucleons, quarks?) but then equating these to atoms – even though atoms are unlikely to float around for nearly 14 billion years without interacting with radiation and other matter to get ionised, form molecules, that may then dissociate, etc.

For many people reading this, I am making a pedantic point. When we talk of the atoms in a person's body, we do not actually mean atoms per se, but component parts of molecules of compounds of the element indicated by the atom referred to*. A water molecule does not contain two hydrogen atoms and an oxygen atom, but it does contain two hydrogen atomic nuclei, and the core of an oxygen atom (its nucleus, and inner electron 'shell') within an 'envelope' of electrons.

* So, it is easier to use the shorthand: 'two atoms of hydrogen and one of oxygen'.

The reason it is sometimes important to be pedantic is that learners often think of a molecule as just a number of atoms stuck together and not as a new unitary entity composed of the same set of collective components but in a new configuration that gives it different properties. (For example, learners sometimes think the electrons in a covalent bond are still 'owned' by different atoms.) There is an associated common alternative conception here: the assumption of initial atomicity, where students tend to think of chemical processes as being interactions between atoms, even though reacting substances are very, very rarely atomic in nature.

Read about the assumption of initial atomicity

The cell nucleus is probably bigger than an atomic nucleus

A cell is about ten times larger than an atom

Keith S. Taber

Dividing cell image by  ar130405 from Pixabay

Bert was a participant in the Understanding Science Project. Bert was interviewed in Y10 and asked about the topics he had been studying, which included circulation in biology, static electricity in physics, and oxidation in chemistry.

He talked about protons, electrons and atoms in both chemistry and physics, and was asked if this could also link with biology. Bert suggested that the nucleus comes up in chemistry (in the context of atomic structure) and physics (in the context of static electricity), and in biology in the context of cells (see 'The nucleus is the brain of the cell'). From the perspective of the science teacher, there is little basis for confusing the nucleus of an atom with that of a cell: obviously a cell is a complex entity with many components, each of which has itself a complex supra-molecular structure – so clearly the atomic nucleus is on a scale many orders of magnitude smaller than a cell nucleus.

However, the expert perspective is based on relating a lot of knowledge that the novice may not yet have, or at least, may not yet be coordinating. In Bert's case, he was only just starting to coordinate these ideas, as became clear when Bert was asked about the relative sizes of atomic and cell nuclei:

Which do you think is bigger, an atom or a cell, or are they both about the same size?

I'd say a cell.

A correct, but hardly confident and definitive, response. I followed up:

Which do you think is bigger, an atom or a cell, or are they both about the same size?

I'd say a cell.

So which do you think is bigger, the nucleus of a cell or the nucleus of an atom, or do you think they're both about the same size?

I think they're both about, well I should, oh. (Laughs) I'd say the one in the cell is probably bigger.

Why do you think that?

Well it's a cell, I'd have thought it was bigger than the atom. And you know, if the nucleus is kind of the main part of it, then it would probably be about, it would be the • same sort of – If the atom was brought to the size of the cell then the nucleus would be the same size I would have thought. So if the atom is smaller then the nucleus is a lot smaller.

I see, so you are sort of like scaling it, accordingly?

Yeah.

I see. So any idea roughly, just very roughly, how much bigger a cell is than an atom?

Erm oh, it's, they're both really microscopic so, I couldn't really say how much bigger they are than each other.

So it seems that Bert would "have thought [the cell] was bigger than the atom", but he did not seem entirely certain of this, whereas from the scientific perspective the difference in scale is considered vast and highly significant. Although cells are generally microscopic entries, they are more like familiar macroscopic objects that we can handle in everyday life than quanticles such as atoms which do not behave like familiar objects. (So, there is sense in which it is meaningless to talk about the size of atoms as they have no edges or surfaces but rather fade away to infinity.)

Erm oh, it's, they're both really microscopic so, I couldn't really say how much bigger they are than each other.

Mm. No, okay. So if I said a cell was ten times bigger than an atom, a hundred times bigger than an atom, a thousand times bigger than an atom?

I wouldn't say that, I'd say, I'd probably go with the first one you said, ten times bigger.

So roughly ten times bigger than an atom. So a nucleus of a cell you'd expect to be roughly ten times bigger than the nucleus of an atom?

Yeah.

But you're not really sure?

Well no, there are a lot more parts in a cell than there is in an atom. So I'd say the nucleus is… if they're both brought to the same size again, I'd say the nucleus of the atom would be bigger than the cell. But I could be totally wrong.

Oh I see, so you've got two arguments there. That because they, because they both have a nucleus in the middle, that in terms of scale, if the cell is quite a bit bigger than the atom, you'd expect the nucleus of the cell would be quite a bit bigger than the atom. But an atom is quite a simple structure, whereas a cell has a lot more things in it, it's a lot more complex.

Yeah.

So maybe there's not so much room for the nucleus of the cell as there is for an atom because you've got to fit so much more in.

Yeah.

Is that what you're thinking?

Yeah.

Bert's thinking here is quite reasonable, within the limits of his knowledge. He suggests that a cell nucleus will be larger than an atomic nucleus, because a cell is larger than an atom. However, he only think the cell nucleus will be about ten times the size of the atomic nucleus as he suspects the cell is only about ten times the size of an atom – after all they are both "really microscopic".

However, he also points out that a cell seems to have a more a lot more components to be fitted in, which would suggest that perhaps there is less space to fit the nucleus, so perhaps it would not be as much as ten times bigger than the atomic nucleus.

So Bert is able to consider a situation where there may be several factors at work (the size of the cell versus the size of the atom; the multitude of cellular components versus the sparsity of atoms) and appreciate how they would operate in an opposite sense within his argument so one could compensate for the other. (This type of thinking is needed a lot in studying science. One example is comparisons of ionisation enthalpies between different atoms and ions. I also recall physics objective examination questions that asked students to compare, say, the conductance of two wires with different resistivity, length and area.)

It is not reasonable to expect Bert to know just how much larger a typical cell nucleus is to an atomic nucleus, however, it is likely the science teacher would expect Bert to be aware that the nucleus is one small part of the atom, which is a constituent of the molecules and ions that are the chemical basis for the organelles such as nuclei found in cells. Bert had told me "there are lots of atoms in you", but he did not seem to have understood the role those atoms played in the structure of all tissues. This would seem to be an example of a fragmentation learning impediment, where a learner has not made the connections between topics and ideas that a science teacher would have intended and expected.

If you take all of the electrons off an atom, then it would not be matter

Keith S. Taber

Mohammed was a participant in the Understanding Science Project. When Mohammed was near the end of his first term of upper secondary science (in Y10) he told me that in his chemistry lessons he had been studying atoms and ionic bonding. When I asked him what an atom was, he suggested that an atom is the smallest amount of matter you can get [*] as well as being "it's the building block of all matter".

The notion that atoms are the smallest components of matter has a strong historical pedigree – but the modern idea of the atom is unlike the solid and indivisible (= atomos: uncuttable) elementary particles imagined by some Greek philosophers. Modern atoms are considered complex structures, and may be dismantled.

It is not unusual for students to suggest that atom is the smallest thing that one can get, and then go on to describe atomic structure in terms of smaller components! The idea that the atom is the smallest thing possible (a kind of motto or slogan) is commonly adopted and then retained despite learning about subatomic particles.

Mohammed, however, justified his suggestion that an atom was "the smallest amount of matter you can get" by arguing that "matter is something that is built out of protons, neutrons and electrons". So Mohammed's notion of what counted as 'matter' (an ontological question) was at odds with the scientific account

Mohammed did not suggest that matter had to have overall neutrality, and his suggestion that matter is something that is built out of protons, neutrons and electrons had to be amended when he realised it would exclude hydrogen atoms as being matter:

So what if I had a balloon full of hydrogen gas, would that, would the hydrogen be matter?

Yeah.

So would that consist of protons, neutrons and electrons?

No it wouldn't. Sorry, can I take away the neutrons

Okay, so matter's what then? What's our new definition of matter?

Protons, electrons.

Mohammed presented his responses with confidence and without hesitation, which seemed to suggest he was offering well established ideas. However, he did not seem to have fully thought through these ideas, and perhaps was constructing a rationale in situ in the interview. The logical consequences of Mohammed's new definition was that atoms and ions would be considered matter but not nuclei or electrons.

What if I had sodium. Do you think that would be matter?… if I had a lump of sodium, would that be matter?

Yeah

And why is that matter?

Because it has, it has a full atom, it has protons, neutrons, electrons, even though you can have no neutrons.

Okay, but it has to have the protons and the electrons?

Yeah.

Now what if I just had one atom of sodium, would that still be matter?

Yeah.

…so let's say I've got my atom, with my eleven protons, and my probably twelve neutrons I think usually. And I've got eleven electrons round the outside. If I take take one of the electrons off this atom, it's not an atom any more is it?

It's an ion.

Now is it still matter?

Yeah.

Because I've still got protons and electrons. What if I took a second electron off, could I take a take second electron off?

Yeah.

What have I got then, then?

You've still got matter.

What if I took a third one off?

Well if you, if you just take all of them off, then you'd stop having matter.

So if I've got eleven electrons, can I take ten of them off?

Yeah.

And I'd still have matter?

Yeah.

The idea of what counts as matter here seems a rather idiosyncratic alternative conception (rather than being a common alternative conception that is widely shared). Science teachers would probably consider that all material (sic) particles are matter, and – perhaps – that this should be obvious to students. However, the submicroscopic realm is far from everyday experience so perhaps it is not surprising that students often form their own alternative conceptions.

A chemical bond would have to be made of atoms

Keith S. Taber

Amy was a participant in the Understanding Science Project. When I had talked to Amy when she was in Y10 she had referred to things being bonded: "where one thing is joined on to another thing, and it can be chemically bonded" and how "in a compound, where two or more elements are joined together, that's an example of chemical bonding".

The following year, in Y11, when she was studying fats she talked about "how they're made up and like with all the double bonds and single bonds" where a double bond was "where there are kind of like two bonds between erm carbon atoms instead of like one" and a bond was "how two atoms are joined together". Later in Y11, Amy told be that she did not know how to explain chemical bonding, but "in lessons like we've always been shown these kind of – things – where you kind of, you've got the atom, and then you've got the little, grey stick things which are meant to be the bonds, and you can just – fit them together."

Source: Image by WikimediaImages from Pixabay

As Amy had told me "everything is made up of atoms", I provocatively asked her if the chemical bond was made of atoms. Amy had "absolutely no idea" but she "suppose(d) it would have to be, wouldn't it".

Not only is this an alternative conception, but to a chemist, or science teacher, the idea that chemical bonds are themselves made up of atoms seems incongruous and offers a potential for infinite regress (are those atoms in the bonds, themselves bonded? If so, are those bonds also made of atoms?)

This alternative conception could be considered a kind of associative learning impediment – that is where a learner makes an unintended link and so applies an idea outside of its range of application. All material is considered to be made of atoms – or at least quanticles comprising one of more nuclei bound to electrons (i.e., ions, molecules). Even this is not an absolute: the material formed immediately after the big bang was not of this form, and nor is the matter in a neutron star, but the material we usually engage with is considered to be made of atom-like units (i.e., ions, molecules).

But to suggest that Amy has made an inappropriate association seems a little unfair. Had Amy thought "all matter was made of atoms" and then suggested that chemical bonding was made of atoms this would be inappropriate as chemical bonding is not material but a process – electrical interactions between quanticles. Yet it is hard to see how one can over-extend the range of 'everything', as in "everything is made up of atoms".

There is an inherent problem with the motto everything is made up of atoms. It is probably something that teachers commonly say, and think is entirely clear – that it is obvious what its scope is – but from the perspective of a student there is not the wealth of background knowledge to appreciate the implied limits on 'everything'.

Learners will readily pick up teaching mottos such as "everything is made of atoms" and take them quite literally: if everything is made of atoms then bonds must be made of atoms. So although she was wrong, I think Amy was just applying something she had learnt.

Na+ has an extra electron in its outer shell and Cl- is minus an electron

The plus sign shows Na+ has an extra electron in its outer shell; the minus sign shows Cl has seven electrons in its outer shell so its minus an electron

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching.

Focal figure (Fig. 5) presented to Annie in interview

She was shown a representation of part of a lattice of ions in sodium chloride (see: Sodium and chlorine probably get held together by just forces*), but Annie identified the signified as atoms, not ions:

Any idea what that’s meant to be?

(pause, c.6s)

Just sodium and chlorine atoms.

As an A level student, Annie would be expected to understand the differences between atoms, ions and molecules, and to known that there were ions in NaCl, but this could have been a simple slip of the tongue. This was tested by further questioning:

Erm, so if you look at these, I mean you said they were sodium and chlorine

Yes.

because presumably you recognise the Na and the Cl,

Yeah.

but only two of them are labelled with ‘Na’ and ‘Cl’.

Yes.

What about the others – what do you think they are?

They’re probably sodium and chlorine, or else they could be, because of the signs, you’ve got plus and minus signs on them representing the charge, or else it could be similar elements going down the groups.

Okay, so you recognise that these, these things represent charges, and you probably guess it’s just me being lazy that I haven’t labelled them all, [Annie laughs] so I’ve just labelled the first couple, erm, so these are what, so you reckon this little one will be, what will that be do you reckon?

Sodium.

That will be a sodium, molecule?

Atom.

Sodium atom, what about this one here?

Chlorine atom.

That’ll be an atom. But these have got charges on?

Yeah.

So Annie recognised the symbols for positive and negative charges, and thought that the figure signified atoms, with charges. The simplest interpretation here is simply that Annie did not recall that atoms were neutral, and 'charged atoms' are called ions in chemistry.

However, Annie then told me that sodium has like one extra electron in its outer shell, and chlorine is minus an electron, so by force pulls they would hold together, and explained this in terms of her notion of charges:

…say that about the electrons again.

Sodium has like one extra electron, ‘cause it has like an extra electron in its outer shell, and chlorine has seven electrons in its outer shell so its minus an electron so by sort of exchanging, the sodium combining with the chlorine just by force pulls they would hold together.

So Annie saw the plus (+) symbol to mean one electron over a full shell (2.8.1), and the minus (-) symbol to mean one electron short of an octet of electrons (2.8.7). For Annie these charges were not net electrical charges, but deviations from octet configurations. These 'deviation charges', for Annie, provided the basis for the attraction between the 'charged' atoms.

This was checked by asking Annie about the electron configurations.

So we looked at a sodium atom earlier, you recognised it as being a sodium atom, I did not say it was, and that had an electronic configuration of…do you remember what the electron configuration was?

Eleven.

So a total of eleven electrons

Yeah.

So do you know what shells they were going to?

Sorry?

Can you tell me what the configuration is in terms of shells? How many in the first shell, how many in the second shell…

2.8.1

2.8.1?

Yeah.

So this here (indicating a cation on the figure), you are saying that this here is 2.8.1

Yes.

And this is 2.8.7 would it be?

Yeah, 2.8.7

Annie held an alternative conception of the nature of the charges associated with ions: that neutral atoms had charges if they did not have full shells/octets of electrons. That this was a general feature of her thinking became clear when she was asked about the symbols for other ions: such as K+ and F.

Whilst Annie's specific 'deviation charge' conception (i.e., that (neutral) atoms would be charged when they did not have fill shells/octets of electrons) would seem to be rather idiosyncratic, alternative conceptions relating to the significance of full shells / octets of electrons seems to be very common among chemistry students.

Although species with Annie's deviation charges did not have actual overall electrical charge, Annie considered that these 'deviation' charges could actually give rise to forces between atoms (she thought that as sodium has one extra electron in its outer shell, and chlorine is 'minus an electron', then they would hold together; The force of lack of electrons pulls two hydrogen atoms together⚗︎).

 

Atoms within an element don't need to be bonded …

Atoms within an element don't need to be bonded because they're all the same sort

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching. Annie was shown a representation of the close packing of 'atoms' in a metal (with the iron symbol, Fe, shown).

Okay, have a look at number 6…

• • • • • • (pause, c.6 s)

They are obviously iron atoms within an element.

Iron atoms within the element?

Yeah.

Okay. Can you say anything about the arrangement of the atoms?

They're all lined together. They're all close together.

They're closely together, yes, and they're all lined together, there's some sort of regular pattern there okay?

Yeah.

So you think that's in the element, that's a lump of iron, a sort of, a magnified view of a lump of iron.

Yes.

So Annie did recognise the image as representing particles ('atoms') in solid iron. The image showed the particles close together, and Annie was asked if they would hold together – the intention being to find out what, if anything, Annie knew about metallic bonding. Annie did think the atoms would be held together, but she did not suggest this was due to a bond or even a force (cf. "Sodium and chlorine don't actually overlap or anything and would probably get held together by just forces"*).

Do you think those atoms will hold together?

Yes.

Why do you think that is?

Because they're all the same sort.

Does that make them hold together?

Yeah.

So it seemed that Annie held an alternative conception that atoms of the same sort would hold together because they were of the same type. This interpretation was tested.

Yeah? Do you think there is any kind of bonds between the atoms?

• • • • • • • • • (pause, c.9s)

No, because they're all the same and they don't need to be bonded.

Right, okay so recapping…here we've got an example of something where the atoms are all the same, and that holds them together even though there's no chemical bonds.

Yeah.

So Annie held an alternative conception of atomic coherence – that atoms of the same type did not need bonding to hold them together, as being the same kind of atom was sufficient for them to hold together.

It is unlikely that Annie had been taught this idea, and it seems quite possible it is an intuitive idea that might be acting as an example of a 'grounded learning impediment': a notion based on general experience, and inappropriately applied in the context of atomic interactions.

An atom is the smallest amount of matter you can get

Keith S. Taber

Mohammed was a participant in the Understanding Science Project. When Mohammed was near the end of his first term of upper secondary science (in Y10) he told me that in his chemistry lessons he had been studying atoms and ionic bonding. When I asked him what an atom was, he suggested it was "the smallest amount of matter you can get" as well as being "it's the building block of all matter". It is not unusual for students to suggest that atom is the smallest thing that one can get, and then go on to report that it has smaller constituent parts when asked about atomic structure! Mohammed justified his suggestion that an atom was "the smallest amount of matter you can get" by excluding individual subatomic particles from being considered matter:

I: So – if I ask you, what's an atom?

M: It's the smallest amount of matter you can get, it's the building block of all matter.

I: So you can't get anything smaller?

M: No. If, if you – if I, let's say, took the electrons away, then it wouldn't be matter any more.

I: What would it be then, then?

M: It would just be a nucleus.

I: So, if we have got an atom, and you take the electrons away, that would seem to be smaller than the atom? But you are saying it is not really matter any more, it does not count as matter.

M: Yeah.

I: So how do we know what's matter? What's matter?

M: Matter is something that is built out of protons, neutrons and electrons.

I: Ah, so it has to have all three?

M: Yeah.

So from Mohammed's perspective it would not necessarily have been inconsistent to suggest that an atom was the smallest particle of matter possible, despite it having structure, if the definition of matter included suitable criteria. However, Mohammed did not suggest that, for example, matter had to have overall neutrality, and his suggestion that matter is something that is built out of protons, neutrons and electrons had to be amended when it was then tested out. He maintained, however, that if you take all of the electrons off an atom, then you would stop having matter.*


A sodium atom wants to donate its electron to another atom

Keith S. Taber

Lovesh was a participant in the Understanding Chemical Bonding Project, studying 'A level' chemistry in a further education college. He was interviewed in his second year of the two year A level course, and was presented with focal figure 1 (below). He recognised figure 1 as showing a "sodium, atom", and was asked about its stability:

Is that a stable species, do you think?

Erm (pause, c.3s) No, because it hasn't got a, a full outer – electron shell, outer electron shell hasn't got eight electrons in.

Lovesh shared the common notion that an atom without a full outer shell / octet of electrons would be unstable compared with the corresponding ion with a full outer shell / octet of electrons. When comparing isolated atoms with the corresponding ions this is seldom the case, yet this is a common alternative conception about chemical stability. A sodium ion can be considered stable in an ionic lattice, or when hydrated in solution, but does not spontaneously ionise as the outer shell electron is attracted to the atom's positive core. Ionisation only occurs when sufficient work is done to overcome this attraction.

Lovesh was demonstrating the common full shells explanatory principle alternative conception which is central to the common octet rule framework – an alternative conceptual framework reflecting very common 'misconceptions' found among learners studying chemistry.

Lovesh was asked what would happen to the atom that he considered unstable:

So if it's not stable, what would tend to happen to that, do you think?

It will wanna donate the electron to another atom.

Right, when you say 'it wants to donate' it?

Erm. (pause, c.3s) Well because that outer electron is less attracted to the nucleus, erm it is, it can easily be transferred, attracted by another atom.

Lovesh's first response here used the term 'wanna' (want to) which if take literally suggests the atom has desires and preferences. This is an example of anthropomorphism, imbuing objects with human-like traits. Using anthropomorphic explanations is a common feature of the octet rule framework which often leads to students talking as if atoms deliberately act to get full outer electron shells.

It has been suggested that such anthropomorphism may be either 'strong'- where the learner is offering an explanation they find convincing – or 'weak' if they are using language metaphorically, just as a figure of speech.

In this case, when Lovesh's use of the notion of 'wants' was queried he was able to shift to a different language register in terms of the action of physics forces – the electron being attracted elsewhere. Lovesh had clearly acquired an appropriate way of thinking about the interactions between atoms, but his spontaneous explanation was couched in anthropomorphic terms. Although in this case the anthropomorphism was of a weak form, the habitual use of this kind of language may come to stand in place of offering a scientifically acceptable account.


A molecule is a bit of a particle – or vice versa

Keith S. Taber

Tim was a participant in the Understanding Science project. When I talked to Tim during the first term of his 'A level' (college) course, he had been studying materials with one of his physics teachers. He referred to molecules in wood (suggesting the analogy that molecules are like a jigsaw)*, and referred to a molecule as "a bit of a particle",

I: So what's a molecule?

T: Erm it's like a bit of a particle, so, something that makes up something.

He then went on to refer to how malleability depended upon atoms "because it's just what they're made out of, it's different things to make it up, different atoms and stuff". His understanding of the relationship between atoms and molecules was probed:

Ah, so we've got atoms?

Yeah.

Not molecules?

(Pause, c.2s)

This is something different this time?

Yeah.

Oh, okay, tell me about atoms.

I think, I think atoms make up molecules, which make particles. Well there's them three things, but I'm not entirely sure what order they go in, and I think atoms are the smallest one.

So we've got, these three words are related, are they, atoms, molecules, particles?

Yeah.

You think there is a relationship there?

Yeah.

And, what, they are similar in some way, but not quite the same, or?

Erm, yeah I think it's like order of size.

You think atom's the smallest?

Yeah.

And bigger than an atom you might have?

A molecule. No a particle, then a molecule, I think.

Yeah, is that the same for everything do you think? Or, are some things molecules, and some things atoms, and some things particles?

(Pause, c.2s)

I think it's the same, I think it all goes – like that.

The term 'particle' is ambiguous in school science. Sometimes by particle we mean a very small, but still macroscopic objects, such as a salt grain or a dust speck. However, often, we are referring to the theoretical submicroscopic entities such as atoms, molecules, ions, neutrons etc, which are components of our theoretical models of the structure of matter. (These particles, behave in ways that are sometimes quite unlike familiar particle behaviour because of the extent to which quantum effects can dominate at their scale. The term 'quanticle' has been proposed as a collective term for these particles.) Students are expected to know which usage of 'particles' we might mean at any given time.

Tim assumes to have misunderstood how the term particle is used (as a collective term) when used to describe quantiles, and so has come to the understanding that at this level there are three different categories of quanticle based on relative size: the atoms (the smallest), and also molecules and particles which are larger than atoms, but which he is unsure how to relate.

The use of the everyday word particle to refer to theoretical submicroscopic entities by analogy with the more familiar everyday particles is very clear to scientists and science teachers, but can act as an associative learning impediment to learners who may think that quanticle particles are just like familiar particles, but perhaps quite a lot smaller. In Tim's case, however, it seems that a different 'learning bug' had occurred. Presumably he had commonly come across the use of the terms 'atom', 'molecule' and 'particle' in science lessons to describe the components of matter at the submicroscopic level, but had not realised that particle was being used as a generic term rather than describing something different to atoms and molecules.

Quantile ontology

During his years of school science Tim had constructed a different 'ontology' of the submicroscopic constituents of matter to that expected by his teachers.

Read about learners' alternative conceptions