Where does the molecule go? A diagnostic question

Many undergraduates seem to think molecules like to hang around rather than moving on


Keith S. Taber


image showing oart of a layer of molecules in a solid
A representation of a small part of a layer of molecules in a solid substance – with one molecule highlighted by colour.
If the solid were melted, and then refrozen, where would the highlighted molecule be?

If you are a science teacher: what would your students think?


In this article I offer my own version (actually two versions, see below) of a question I saw used in a published study (Smith & Villarreal, 2015a). As I no longer have any students, I cannot easily try this out, but perhaps a reader who is currently teaching science might be tempted to see what their pupils or students might think? (If you do, I would apreciate hearing about what you find!)

The two versions of the question can be downloaded from the links below.

The question could be given to individual learners, or as the basis of small group discussion, or perhaps just projected onto the screen for a 'show of hands' for each response option. (Exploring student thinking to detect misconceptions is known as diagnostic assessment.)


Alternative conceptions abound

I am very familiar with the extensive evidence which shows that is very common for learners, at all levels, and in any topic, to hold alternative conceptions ('misconceptions') at odds with canonical science and the target knowledge set out in the science curriculum. So, I am seldom surprised when I read about a study which reports finding learners demonstrating such conceptions.

Yet one study I read which reported learners commonly holding an alternative conception did surprise me. I would have not been surprised if the respondents had been secondary levels students, and a minority of them had demonstrated this particular conception, but I would not have expected how the study found a high incidence of the alternative conception among undergraduates studying chemistry.

The research asked about what happens when a solid is either dissolved, or melted, and then returns to the solid state. It used an instrument that presented a figure representing the particles in a small section of a solid, with one particle marked out, and asked the learners to draw the equivalent images after the solid had either dissolved and then been recrystallised, or melted and then been refrozen.

I an going to limit myself to the easier context (melt, then freeze – no solvent molecules involved). According to the researchers, the results suggested that a large proportion of the undergraduates indicated that the atom that had been marked out would be found in the same position in the solid at the end of the process: the exact proportion shifted in two versions of the study (65%, 50%) but a very rough gloss was that at least half of the learners located the marked particle back at its original point.

"These results indicated that a large proportion of the students viewed the [marked] molecule as being near to the same position after melting as it was before melting, and being in the position it was originally in after the liquid froze back to the solid."

Smith & Villarreal, 2015a: 277-278

Perhaps this should not have surprised me – I have been told by very bright A level students that on homolytic bond fusion each atom would always get its own electrons back, and this seems something of a parallel notion.

Now there was some questioning of the methodology and instrument used here (Langbeheim, 2015; see also Smith & Villarreal, 2015b) – as there often is in educational research – but it seemed a substantial proportion of learners thought the solid would reform with particles in their original positions, and this suggests a rather limited understanding of the level of molecular motion in the dissolved or molten state. I would not have been so surprised if this work had been carried out with, say, twelve year olds – but such a high level of misconception among undergraduates did surprise me as it reflects a failure to imagine the nature of the molecular world, and that surely makes learning high level (e.g., degree level) chemistry very difficult.

Now there are serious challenges in representing the nanoscale (thus the questioning of the representations used in the study) simply because molecules, ions, electron, atoms – are not the kinds of things we can draw realistically – they are fuzzy objects with no surfaces that somewhat blend into their neighbours. This raises a possible defence for students in such studies

'yes, your honour, I did show the particle as having returned to the same position, but as the focal figure had been drawn unrealistically as a set of circles I did not think authenticity was being asked for!'

It seems unlikely any learner really did think that – and the researchers did ask learners about their reasoning. The most common type of explanations were (Smith & Villarreal, 2015a: 278):

  • In the molten state: The molecule doesn't move far from its original position
  • After resolidification: The molecule ends up near where it was positioned in the liquid

Representing quanticles

Molecules, ions, atoms are 'quantum objects' which do not have the properties of familiar macroscopic objects. The nanoscopic particles in a lattice or liquid are not like the particles in table salt (grains) or sugar (granules) which each have a definite volume and surface, and which cannot be made to overlap their neighbours.

The following is my representation of a section of a layer of molecules in a solid substance. I have shown them round as that is simpler. Most molecules are not round (but 'molecules' of, say, neon or argon, are.) I have tried to show them as being fuzzy rather than as if ball-bearings with definite surfaces as the 'substance' of atoms, ions and molecules is largely electric fields and electron 'clouds' (a rather appropriate metaphor) rather than anything 'solid'. (And, of course, the word solid loses its meaning for a single molecule. We might, figuratively, suggest the atom is like a tiny liquid drop surrounded by an immense volume of gas – but it is probably best to avoid using such comparisons with learners becasue of the potential for them taking the terms literally.)

Should the molecules be touching in the solid? That is a problematic question as how do we decide whether things are touching when the things concerned do not have distinct surfaces but rather fade away to infinity? (If the gas giants Jupiter and Saturn were to ever come together, how would we decide at what point they had actually physically collided?)

Often in science teaching we cheat and show molecules touching in solids when teaching about the differences between condensed and gaseous states; but then hope students have forgotten this by the time we want to teach about thermal expansion of solids.

My diagram shows a layer of the regular crystal structure, so if you think my 'molecules' should touch then you can imagine that they would once the adjacent layers were drawn in.


image showing art of a layer of molecules in a solid

The image I have used might suggest too much space between molecules…

image showing part of molecules in a solid - 2 layers

…adding another layer might help give the appearance of close packing, but if a different colour is used this may suggest some physical difference…

image showing part of molecules in a solid - 2 layers

yet making both layers the same colour makes the figure more dificult to interpret.


It is a problem of scale

The real issue for the novice learner here is one of scale. The scale of atoms is far beyond our ready grasp. My figure shows a much more extended section of material than that in the original study – but still, a tiny, tiny, tiny fraction of a solid we could readily see and manipulate. If the solid substance melted, then (e.g., around room temperature) we would expect molecular speeds of the order of hundreds of metres per second. In the gas phase that might be somewhat reflected in how far some molecules get (but diffusion is still much slowed by collisions), but in a condensed phase, so in a liquid, the molecules are not going to get very far at all before colliding with a 'neighbour' and being deflected off course.

The so-called 'random walk' of any molecule in a liquid will reflect mean speeds orders of magnitude less than the hundreds of metres per second instantaneous speed (as it is constantly being shifted to a new direction, and is just as likely to be sent back in the direction it originated).

(See an animated simulation of a random walk here)

But then, given the size of the sample represented, the distance from one end of the image to the other is of the order of maybe 0.000 000 001 metres. If a molecule with an instantaneous speed of hundreds of metres per second only has to travel of the order of perhaps 0.000 000 000 1m before colliding with the next molecule, it is going to have an awful lot of collisions each second – many billions. So, a molecule bumping around at say 300 m/s would not take very long to move 0.000 000 001 m (and so off the region of lattice shown in my figure) even with all those restrictive collisions!


Two versions of the diagnostic question for use in class


dignostic question showing particles in solid, and asking about position of molecule after melting and refreezing.
A 3-option diagnostic question testing understanding of molecular motion (Download a copy of this file)

dignostic question showing particles in solid, and asking about position of molecule after melting and refreezing.
A 4-option diagnostic question testing understanding of molecular motion (Download a copy of this file)

Even if the solid melts and is a liquid for only a few minutes (that is, a few hundred seconds), and even if we have placed the original solid in a tightly constricting container such that the liquid does not change overall shape, what are the chances of the molecule ending up in the same lattice position? Or even being in the frame when we represent such a small section of the lattice?

If we are only representing one layer of molecules, then what are the chances of the molecule even ending up in the same layer (it is likely to have moved 'up'/'down' just as much as laterally along the plane represented whilst in the liquid state).


Three random walks starting from the same origin. The molecule moves in all three dimensions.
(Image from https://commons.wikimedia.org/wiki/File:Walk3d_0.png – licensed under the Creative Commons Attribution-Share Alike 3.0 Unported licence)

So, I think this is an easy question.

😉

Each of the options (in both versions of the question) are possible outcomes.

Given that the section of the latice shown is so limited, all the positions shown are pretty much local to the starting point, so I would argue the molecule could almost equally likely end up in any of the lattice positions in the figure (so: A, C and D are, in effect, equally likely – as would be any other lattice position you selected from the image).

What about Option B?

Option B reflects all the possibilities where the molecule ends up outside the small section of lattice layer illustrated, including all the options where it has moved to a different layer. There will be billions and billions of these options, including, at least, many thousands of options close enough for the molecule to have easily moved there in the number of 'random walk' steps feasible in the time scale.

So, the answer to the question of which option is most likely (in either version of the question) is easy – option B is by far most likely.

But I wonder if most students who have been taught about particle models and states of matter would agree with me? If Smith and Villarreal's undergraduate sample is anything to go by, then I guess not.


Work cited:
  • Smith, K. C., & Villarreal, S. (2015a). Using animations in identifying general chemistry students' misconceptions and evaluating their knowledge transfer relating to particle position in physical changes [10.1039/C4RP00229F]. Chemistry Education Research and Practice, 16(2), 273-282. https://doi.org/10.1039/C4RP00229F
  • Langbeheim, E. (2015). Reinterpretation of students' ideas when reasoning about particle model illustrations. A Response to "Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating their Knowledge Transfer Relating to Particle Position in Physical Changes" [10.1039/C5RP00076A]. Chemistry Education Research and Practice, 16(3), 697-700. https://doi.org/10.1039/C5RP00076A
  • Smith, K. C., & Villarreal, S. (2015b). A Reply to "Reinterpretation of Students' Ideas when Reasoning about Particle Model Illustrations. A Response to 'Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating their Knowledge Transfer Relating to Particle Position in Physical Changes' by Smith & Villarreal (2015)" [10.1039/C5RP00095E]. Chemistry Education Research and Practice, 16, 701-703. https://doi.org/10.1039/C5RP00095E


The book  Student Thinking and Learning in Science: Perspectives on the Nature and Development of Learners' Ideas gives an account of the nature of learners' conceptions, and how they develop, and how teachers can plan teaching accordingly.

It includes many examples of student alternative conceptions in science topics.


Author: Keith

Former school and college science teacher, teacher educator, research supervisor, and research methods lecturer. Emeritus Professor of Science Education at the University of Cambridge.

2 thoughts on “Where does the molecule go? A diagnostic question”

  1. option B can be interpreted as the marked molecule escaping the liquid state as vapor. It is unlikely as the liquid is just above the melting point and stays as liquid for only few minutes.

  2. B

    Although, we don't know what Smith and Villarreal had taught/told their students.

    I am sorry, I am not going to scroll back up (my tiny phone screen) and find out who their students were.

    It's a problem of perception then, at least for me it is.

    I teach 11 – 18 year olds.

Leave a Reply

Your email address will not be published. Required fields are marked *

Discover more from Science-Education-Research

Subscribe now to keep reading and get access to the full archive.

Continue reading