Occidently re-orienting atoms

It seems atoms are not quite as chemists imagine them not to be

Keith S. Taber

A research paper presenting a new model of atomic and molecular structure was recently brought to my attention. 1

The paper header

'New Atomic Model with Identical Electrons Position in the Orbital's and Modification of Chemical Bonds and MOT [molecular orbital theory]' 2 is published in a recently-launched journal with the impressive title of Annals of Atoms and Molecules. This is an open-access journal available free on the web – so readily accessible to chemistry experts, as well as students studying the subject and lay-people looking to learn from a scholarly source. [Spoiler alert – it may not be an ideal source for scholarly information!]

In the paper, Dr Morshed proposes a new model of the atom that he suggests overcomes many problems with the model currently used in chemistry.

A new model of atomic structure envisages East and West poles as well as North and South poles) (Morshed, 2020a, p.8)

Of course, as I have often pointed out on this blog, one of the downsides of the explosion in on-line publishing and the move to open access models of publication, is that anyone can set up as an academic journal publisher and it can be hard for the non-expert to know what reflects genuine academic quality when what gets published in many new journals often seems to depend primarily upon an author being willing to pay the publisher a hefty fee (Taber, 2013).

That is not to suggest open-access publishing has to compromise quality: the well-established, recognised-as-prestigious journals can afford to charge many hundreds of pounds for open-access publication and still be selective. But, new journals, often unable to persuade experienced experts to act as reviewers, will not attract many quality papers, and so cannot be very selective if they are to cover costs (or indeed make the hoped-for profits for their publishers).

A peer reviewed journal

The journal with the impressive title of Annals of Atom and Molecules has a website which explains that

"Annals of Atoms and Molecules is an open access, peer reviewed journal that publishes novel research insights covering but not limited to constituents of atoms, isotopes of an element, models of atoms and molecules, excitations and de-excitations, ionizations, radiation laws, temperatures and characteristic wavelengths of atoms and molecules. All the published manuscripts are subjected to standardized peer review processing".

https://scholars.direct/journal.php?jid=atoms-and-molecules

So, in principle at least, the journal has experts in the field critique submissions, and advise the editors on (i) whether a manuscript has potential to be of sufficient interest and quality to be worth publishing, and (ii) if so, what changes might be needed before publications is wise.

Read about peer review

Standardised peer review gives the impression of some kind of moderation (perhaps renormalisation given the focus of the journal? 3) of review reports, which would involve a lot of extra work and another layer of administration in the review process…but I somehow suspect this claim really just meant a 'standard' process. This does not seem to be a journal where great care is taken over the language used.

Effective peer review relies on suitable experts taking on the reviewing, and editors prepared to act on their recommendations. The website lists five members of the editorial board, most of whom seem to be associated with science departments in academic institutions:

  • Prof. Farid Menaa (Fluorotronics Inc) 4
  • Prof. Sabrin Ragab Mohamed Ibrahim (Department of Pharmacognosy and Pharmaceutical chemistry, Taibah University)
  • Prof. Mina Yoon (Department of Physics and Astronomy, University of Tennessee)
  • Dr. Christian G Parigger (Department of Physics, University of Tennessee Space Institute)
  • Dr. Essam Hammam El-Behaedi (Department of Chemistry and Biochemistry, University of North Carolina Wilmington)

The members of a journal Editorial Board will not necessarily undertake the reviewing themselves, but are the people entrusted by the publisher with scholarly oversight of the quality of the journal. For this journal it is claimed that "Initially the editorial board member handles the manuscript and may assign or the editorial staff may assign the reviewers for the received manuscript". This sounds promising, as at least (it is claimed) all submissions are initially seen by a Board member, whether or not they actually select the expert reviewers. (The 'or' means that the claim is, of course, logically true even if in actuality all of the reviewers are assigned by the unidentified office staff.)

At the time of writing only three papers have been published in the Annals. One reviews a spectroscopic method, one is a short essay on quantum ideas in chemistry – and then there is Dr Morshed's new atomic theory.

A new theory of atomic structure

The abstract of Dr Morshed's paper immediately suggests that this is a manuscript which was either not carefully prepared or has been mistreated in production. The first sentence is:

The concept of atom has undergone numerous changes in the history of chemistry, most notably the realization that atoms are divisible and have internal structure Scientists have known about atoms long before they could produce images of them with powerful magnifying tools because atoms could not be seen, the early ideas about atoms were mostly founded in philosophical and religion-based reasoning.

Morshed, 2020a, p.6

Presumably, this was intended to be more than one sentence. If the author made errors in the text, they should have been queried by the copy editor. If the production department introduced errors, then they should have been corrected by the author when sent the proofs for checking. Of course, a few errors can sometimes still slip through, but this paper has many of them. Precise language is important in a research paper, and sloppy errors do not give the reader confidence in the work being reported.

The novelty of the work is also set out in the abstract:

In my new atomic model, I have presented the definite position of electron/electron pairs in the different orbital (energy shells) with the identical distance among all nearby electron pairs and the degree position of electrons/electron pairs with the Center Point of Atoms (nucleus) in atomic structure, also in the molecular orbital.

Morshed, 2020a, p.6

This suggests more serious issues with the submission than simple typographical errors.

Orbital /energy shells

The term "orbital (energy shells)" is an obvious red flag to any chemist asked to evaluate this paper. There are serious philosophical arguments about precisely what a model is and the extent to which a model of the atom might be considered to be realistic. Arguably, models that are not mathematical and which rely on visualising the atom are inherently not realistic as atoms are not the kinds of things one could see. So, terms such as shell or orbital are either being used to refer to some feature in a mathematical description or are to some extent metaphorical. BUT, when the term shell is used, it conventionally means something different from an orbital.

That is, in the chemical community, the electron shell (sic, not energy shell) and the orbital refer to different classes of entity (even if in the case of the K shell there is only one associated orbital). Energy levels are related, but again somewhat distinct – an energy level is ontologically quite different to an orbital or a shell in a similar way to how sea level is very different in kind to a harbour or a lagoon; or how 'mains voltage' is quite different from the house's distribution box or mains ring; or how an IQ measurement is a different kind of thing to the brain of the person being assessed.

Definite positions of electrons

An orbital is often understood as a description of the distribution of the electron density – we might picture (bearing in mind my point that the most authentic models are mathematical) the electron smeared out as in a kind of time-lapse representation of where the electron moves around the volume of space designated as an orbital. Although, as an entity small enough for quantum effects to be significant (a 'quanticle'? – with some wave-like characteristics, rather than a particle that is just like a bearing ball only much smaller), it may be better not to think of the electron actually being at any specific point in space, but rather having different probabilities of being located at specific points if we could detect precisely where it was at any moment.

That is, if one wants to consider the electron as being at specific points in space then this can only be done probabilistically. The notion of "the definite position of electron/electron pairs in the different orbital" is simply nonsensical when the orbital is understood in terms of a wave function. Any expert asked to review this manuscript would surely have been troubled by this description.

It is often said that electrons are sometimes particles and sometimes waves but that is a very anthropocentric view deriving from how at the scale humans experience the world, these seem very distinct types of things. Perhaps it is better to think that electrons are neither particles nor waves as we experience them, but something else (quanticles) with more subtle behavioural repertoires. We think that there is a fundamental inherent fuzziness to matter at the scale where we describe atoms and molecules.

So, Dr Morshed wants to define 'definite positions' for electrons in his model, but electrons in atoms do not have a fixed position. (Later there is reference to circulation – so perhaps these are considered as definite relative positions?) In any case, due to the inherent fuzziness in matter, if an electron's position was known absolutely then there would would (by the Heisenberg uncertainty principle) be an infinite uncertainty in its momentum, so although we might know 'exactly' where it was 'now' (or rather 'just now' when the measurement occurred as it would take time for the signal to be processed through first our laboratory, and then our nervous, apparatus!) this would come with having little idea where it was a moment later. Over any duration of time, the electron in an atom does not have a definite position – so there is little value in any model that seeks to represent such a fixed position.

The problem addressed

Dr Morshed begins by giving some general historical introduction to ideas about the atom, before going on to set out what is argued to be the limitation of current theory:

Electrons are arranged in different orbital[s] by different numbers in pairs/unpaired around the nuclei. Electrons pairs are associated by opposite spin together to restrict opposite movement for stability in orbital rather angular movements. The structural description is obeyed for the last more than hundred years but the exact positions of electrons/pairs in the energy shells of atomic orbital are not described with the exact locations among different orbital/shells.

Morshed, 2020a, p.6

Some of this is incoherent. It may well be that English is not Dr Morshed's native language, in which case it is understandable that producing clear English prose may be challenging. What is less forgivable is that whichever of Profs. Ibrahim, Yoon, or Drs Menaa, Parigger, or El-Behaedi initially handled the manuscript did not point out that it needed to be corrected and in clear English before it could be considered for publication, which could have helped the author avoid the ignominy of having his work published with so many errors.

That assumes, of course, that whichever of Ibrahim, Yoon, Menaa, Parigger, or El-Behaedi initially handled the manuscript were so ignorant of chemistry to be excused for not spotting that a paper addressing the issue of how current atomic models fail to assign "exact positions of electrons/pairs in the energy shells of atomic orbital are not described with the exact locations among different orbital/shells" both confused distinct basic atomic concepts and seemed to be criticising a model of atomic structure that students move beyond before completing upper secondary chemistry. In other words, this paper should have been rejected on editorial screening, and never should have been sent to review, as its basic premise was inconsistent with modern chemical theory.

If, as claimed, all papers are seen by the one of the editorial board, then the person assigned as handling editor for this one does not seem to have taken the job seriously. (And as only three papers have been published since the journal started, the workload shared among five board members does not seem especially onerous.)

Just in case the handling editorial board member was not reading the text closely enough, Dr Morshed offered some images of the atomic model which is being critiqued as inadequate in the paper:

A model of the atom criticised in the paper in Annals of Atoms and Molecules (Morshed, 2020a, p.7)

I should point out that I am able to reproduce material from this paper as it is claimed as copyright of the author who has chosen to publish open access with a license that "permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited". (Although, if you look very closely at the first figure, it seems to have superimposed in red text "© Copyright www.chemistrytutotial.org", where, by an unlikely coincidence, I found what seems to be the same image on the page Atomic Structure with Examples.)

Read about copyright in academic works

Again, the handling editor should have noticed that these images in the figure reflect the basic model of the atom taught in introductory school classes as commonly represented in simple two-dimensional images. These are not the models used to progress knowledge in academic chemistry today.

These images are not being reproduced in the research paper as part of some discussion of atomic representations in school textbooks. Rather this is the model that the author is suggesting falls short as part of current chemical theory – but it is actually an introductory pedagogical model that is not the basis of any contemporary chemical research, and indeed has not been so for the best part of a century. Even though the expression "the electrons/electron pairs position is not identical by their position, alignments or distribution" does not have any clear meaning in normal English, what is clear is that these very simple models are only used today for introductory pedagogic purposes.

Symmetrical atoms?

The criticism of the model continues:

The existing electrons pair coupling model is not also shown clearly in figure by which a clear structure of opposite spine pair can be drowned. Also there are no proper distribution of electron/s around the center (nuclei) to maintain equal number of electrons/electronic charge (charge proportionality) around the total mass area of atomic circle (360°) in the existing atomic model (Figure 1). There are no clear ideas about the speed proportion and time of circulation of electrons/electron pairs in the atomic orbital/shells so there is no answer about the possibility of uneven number of electrons/electron pairs at any position /side of atomic body can arise that must make any atom unstable.

Morshed, 2020a, p.7

Again, this makes little sense (to me at least – perhaps the Editorial Board members are better at hermeneutics than I am). Now we are told that electrons are 'circulating' in the orbitals/shell which seems inconsistent with them having the "definite positions" that Dr Morshed's model supposedly offers. Although I can have a guess at some of the intended meaning, I really would love to know what is meant by "a clear structure of opposite spine pair can be drowned".

Protecting an atom from drowning? (Images by Image by ZedH  and  Clker-Free-Vector-Images from Pixabay)
A flat model of the atom

I initially thought that Dr Morshed is concerned that the model shown in figure 1 cannot effectively show how in the three dimensional atomic structure the electrons must be arranged to give a totally symmetric patterns: and (in his argument) that this would be needed else it would leave the atoms unstable. Of course, two dimensional images do not easily show three dimensional structure. So when Dr Morshed referred to the "atomic circle (360°) in the existing atomic model" I assumed he was actually referring to the sphere.

On reflection, I am not so sure. I was unimpressed by the introduction of cardinal points for the atom (see Dr Morshed's figure 2 above, and figure 4 below). I could understand the idea of a nominal North and South pole in relation to the angular momentum of the nucleus and electrons 'spinning up or down' – but surely the East and West poles are completely arbitrary for an atom as any point on the 'equator' could be used as the basis for assigning these poles. However, if Dr Morshed is actually thinking in terms of a circular (i.e., flat) model of the atom, and not circular representations of a spherical model of atomic structure then atoms would indeed have an Occident and an Orient! The East pole WOULD be to the right when the atom has the North pole at the top as is conventional in most maps today. 5

But atoms are not all symmetrical?

But surely most atoms are not fully symmetrical, and indeed this is linked to why most elements do not commonly exist as discrete atoms. The elements of those that do, the noble gas elements, are renown for not readily reacting because they (atypically for atoms) have a symmetrical electronic 'shield' for the nuclear charge. However, even some of these elements can be made cold enough to solidify – as the van der Waals forces allow transient fluctuating dipoles. So the argument seems to be based on a serious alternative conception of the usual models of atomic structure.

It is the lack of full symmetry in an atom of say, fluorine, or chlorine, which means that although it is a neutral species it has an electron affinity (that is, energy is released when the anion is formed) as an electron can be attracted to the core charge where it is not fully shielded.

The reference to "time of circulation of electrons/electron pairs in the atomic orbital/shells" seems to refer to a mechanical model of orbital motion, which again, has no part in current chemical theory.

Preventing negative electron pairs repelling each other

Dr Morshed suggests that the existing model of atomic structure cannot explain

Why the similar charged electrons don't feel repulsion among themselves within the same nearby atomic orbital of same atom or even in the molecular orbital when two or more atomic orbital come closer to form molecular orbital within tinier space though there is more possibility of repulsion between similar charged electrons according to existing atomic model.

Morshed, 2020a, p.7

Electrons do not feel repulsion for the same reason they do not feel shame or hunger or boredom – or disdain for poor quality journals. Electrons are not the kind of objects that can feel anything. However, this anthropomorphic expression is clearly being used metaphorically.

I think Dr Morshed is suggesting that the conventional models of atomic structure do not explain why electrons/electron pairs do not repel each other. Of course, they do repel each other – so there is no need to look for an explanation. This then seems to be an alternative conception of current models of the atom. (The electrons do not get ejected from the atom as they are also attracted to the nucleus – but, if they did not repel each other, there would be no equilibrium of forces, and the structure of the atom would not be stable.)

A new model of atomic structure supposedly reflects the 'proper' angles between electrons in atoms (Morshed, 2020, p.9)

Dr Morshed suggests that his model (see his Figure 4) 'proves the impossibility of repulsion between any electron pairs' – even those with similar charges. All electron pairs have negative (so similar) charges – it is part of the accepted definition of an electron that is is a negatively charged entity. I do not think Dr Morshed is actually suggesting otherwise, even if he thinks the electrons in different atoms have different magnitudes of negative charge (Morshad, 2020b).

Dr Morshed introduces a new concept that he calls 'center of electron pairs neutralization point'.

This is the pin-point situated in a middle position between two electrons of opposite spin pairs. The point is exactly between of opposite spine electron pairs so how the opposite electronic spin is neutralized to remaining a stable electron pair consisting of two opposite spin electrons. This CENP points are assumed to be situated between the cross section of opposite spine electronic pair's magnetic momentum field diameter (Figure 3).

Morshed, 2020a, p.8
The yellow dot represents a point able to neutralise the opposite spin of a pair of electrons(!), and is located at the point found by drawing a cross from the ends of the ⥯ symbols used to show the electron spin! This seems to be envisaged a real point that has real effects, despite being located in terms of the geometry of a totally arbitrary symbol.

So, the electron pair is shown as a closely bound pair of electrons with the midspot of the complex highlighted (yellow in the figure) as the 'center of electron pairs neutralization point'. Although the angular momentum of the electrons with opposite spin leads to a magnetic interaction between them, they are still giving rise to an electric field which permeates through the space around them. Dr Morshed seems to be suggesting that in his model there is no repulsion between the electron pairs. He argues that:

According to magnetic attraction/repulsion characteristics any similar charges repulse or opposite charges attract when the charges energy line is in straight points. If similar charged or opposite charged end are even close but their center of energy points is not in straight line, there will be no attraction or repulsion between the charges (positive/negative). Similarly, when electrons are arranged in energy shells around the nucleus the electrons remain in pairs within opposite spin electrons where the poses a point which represent as the center of repulsion/attraction points (CENP) and two CENP never come to a straight within the atomic orbital so the similar charged electrons pairs don't feel repulsion within the energy shells.

Morshed, 2020a, pp.8-9

A literal reading of this makes little sense as any two charges will always have their centres in a straight line (from the definition of a straight line!) regardless of whether similar or opposite charges or whether close or far apart.

My best interpretation of this (and I am happy to hear a better one) is that because the atom is flat, and because the electron pairs have spin up and spin down electrons, with are represented by a kind of ⥮ symbol, the electrons in some way shield the 'CENP' so that the electron pair can only interact with another charge that has a direct line of sight to the CENP.

Morshed seems to be suggesting that although electron pairs are aligned to allow attractions with the nucleus (e.g., blue arrows) any repulsion between electron pairs is blocked because an electron in the pair shields the central point of the pair (e.g., red arrow and lines)

There are some obvious problems here from a canonical perspective, even leaving aside the flat model of the atom. One issue is that although electrons are sometimes represented as or ⇂ to indicate spin, electrons are not actually physically shaped like . Secondly, pairing allows electrons to occupy the same orbital (that is, have the same set of principal, azimuthal and magnetic quantum numbers) – but this does not mean they are meant to be fixed into a closely bound entity. Also, this model works by taking the idea of spin direction literally, when – if we do that – electrons can have only have spin of ±1/2. In a literal representation such as used by Dr Morshed he would need to have ALL his electrons orientated vertically (or at least all at the same angle from the vertical). So, the model does not work in its own terms as it would prevent most of the electron pairs being attracted to the nucleus.

Morshed's figure 4 'corrected' given that electrons can only exist in two spin states. In the (corrected version of the representation of the) Morshed model most electron pairs would not be attracted to the nucleus.

A new (mis)conception of ionic bonding

Dr Morshed argues that

In case of ionic compound formation problem with the existing atomic model is where the transferred electron will take position in the new location on transferred atom? If the electrons position is not proportionally distributed along total 360 circulating area of atom, then the position of new transferred electron will cause the polarity in every ion (both cation and anion forms by every transformation of electrons) so the desired ionization is not possible thus every atom (ion) would become dipolar. On the point of view any ionization would not possible i.e., no ionic bonded compound would have formed.

Morshed, 2020, p.7

Again, although the argument may have been very clear to the author, this seems incoherent to a reader. I think Dr Morshed may be arguing that unless atoms have totally symmetrical electrons distributions ("proportionally distributed along total 360 circulating area of atom") then when the ion is formed it will have a polarity. Yet, this seems entirely back to front.

If the atom to be ionised was totally symmetric (as Dr Morshed thinks it should be), then forming an ion from the atom would require disrupting the symmetry. Whereas, by contrast, in the current canonical model, we assume most atoms are not symmetrical, and the formation of simple ions leads to a symmetric distribution of electrons (but unlike in the noble gas atoms, a symmetrical electron distribution which does not balance the nuclear charge).

Dr Morshad illustrates his idea:

Ionic bond formation represented by an non-viable interaction between atoms (Morshed, 2020, p.10)

Now these images show interactions between discrete atoms (a chemically quite unlikely scenario, as discrete atoms of sodium and chlorine are not readily found) that are energetically non-viable. As has often been pointed out, the energy released when the chloride ion is formed is much less than the energy required to ionise the sodium atom, so although this scheme is very common on the web and in poor quality textbooks, it is a kind of chemical fairy tale that does not relate to any likely chemical context. (See, for example, Salt is like two atoms joined together.)

The only obvious difference between these two versions of the fairly tale (if we ignore that in the new version both protons and neutrons appear to be indicated by + signs which is unhelpful) seems to be that the transferred electron changes its spin for some reason that does not seem to be explained in the accompanying text. The explanation that is given is

My new atomic model with identical electrons pair angle position is able to give logical solution to the problems of ion/ionic bond formation. As follows: The metallic atom which donate electrons during ion formation from outermost orbital, the electrons are arranged maintaining definite degree angle around 360° atomic mass body shown in (Figure 4). After the transformation the transferred electron take position at the vacant place of the transferred atoms outermost orbital, then instant the near most electrons/pairs rearrange their position in the orbital changing their angle position with the CPA [central point of the atom, i.e., the nucleus] due to electromagnetic repulsion feeling among the similar charged electrons/pairs. Thus the ionic atom gets equal electron charge density around whole of their 360° atomic mass body resulting the cation and anion due to the positive and negative charge difference in atomic orbital with their respective nucleus. Thus every ion becomes non polar ion to form ionic bond within two opposite charged ion (Figure 5).

Morshed, 2020, p.9

So, I think, supposedly part (b) of Dr Morshed's figure 5 is meant to show, better than part (a), how the electron distribution is modified when the ion is formed. It would of course be quite possible to show this in the kind of representations used in (a), but in any case it does not look any more obvious in (b) to my eye!

So, figure 5 does not seem to show very well Dr Morshed's solution to a problem I do not think actually exists in the context on a non-viable chemical process. Hm.

Finding space for the forces

Another problem with the conventional models, according to Dr Morshed, is that, as suggested in his figures 6 and 7 is that the current models do not leave space for the 'intermolecular' [sic, intramolecular] force of attraction in covalent bonds.

In current models, according to Morshed's paper, electrons get in the way of the covalent bond (Morshed, 2020, p.11)

Dr Morshad writes that

According to present structural presentation of shared paired electrons remain at the juncture of the bonded atomic orbital, if they remain like such position they will restrict the Inter [sic] Molecular Force (IMF) between the bonded atomic nuclei because the shared paired electron restricts the attraction force lying at the straight attraction line of the bonded nuclei the shown in (Figure 6a).

Morshed, 2020, p.11

There seem to be several alternative conceptions operating here – reflecting some of the kind of confusions reported in the literature from studies on students' ideas.

  1. Just because the images are static two dimensional representations, this does not mean electrons are envisaged to be stationary at some point on a shell;
  2. and just because we draw representations of atoms on flat paper, this does not mean atoms are flat;
  3. The figure is meant to represent the bond, which is an overall configuration of the nuclei and the electrons, so there is not a distinct intramolecular force operating separately;
  4. Without the electrons there would be no "Inter [sic] Molecular Force (IMF) between the bonded atomic nuclei" as the nuclei repel each other: the bonding electrons do not restrict the intramolecular force (blocking it, because they lie between the nuclei), but are crucial to it existing.

Regarding the first point here, Dr Morshed suggests

Covalent bonds are formed by sharing of electrons between the bonded atoms and the shared paired electrons are formed by contribution of one electron each of the participating atoms. The shared paired electrons remain at the overlapping chamber (at the juncture of the overlapped atomic orbital).

Morshed, 2020, p.9

That is, according to Dr Morshed's account of current atomic theory, in drawing overlapping electron shells, the electrons of the bond which are 'shared' (and that is just a metaphor, of course) are limited to the area shown as overlapping. This is treating an abstract and simplistic representation as if it is realistic. There is no chamber. Indeed, the molecular orbital formed by the overlap of the atomic orbitals will 'allow' the electrons to be likely to be found within quite a (relatively – on an atomic scale) large volume of space around the bond axis. Atomic orbitals that overlap to form molecular orbitals are in effect replaced by those molecular orbitals – the new orbital geometry reflects the new wavefunction that takes into account both electrons in the orbital.

So, if there has been overlap, the contributing atomic orbitals should be considered to have been replaced (not simply formed a chamber where the circles overlap), except of course Dr Morshed 's figures 6 and 7 show shells and do not actually represent the system of atomic orbitals.

Double bonds

This same failure to interpret the intentions and limitation of the simplistic form of representation used in introductory school chemistry leads to similar issues when Dr Morshed considers double bonding.

A new model of atomic structure suggests an odd geometry for pi bonds (Morshed, 2020, p.12)

Dr Morshed objects to the kind of representation on the left in his figure 8 as two electron pairs occupy the same area of overlap ('chamber'),

It is shown for an Oxygen molecule; two electron shared pairs are formed and take place at the overlapping chamber result from the outermost orbital of two bonded Oxygen atoms. But in real séance [sic?] that is impossible because two shared paired electrons cannot remain in a single overlapping chamber because of repulsion among each pairs and among individual electrons.

Morshed, 2020, p.12.

Yet, in the model Dr Morshed employs he had claimed that electron pairs do not repel unless they are aligned to allow a direct line of sight between their CNPs. In any case, the figure he criticises does not show overlapping orbitals, but overlapping L shells. He suggests that the existing models (which of course are not models currently used in chemistry except in introductory classes) imply the double bond in oxygen must be two sigma bonds: "The present structure of O2 molecule show only two pairs of electron with head to head overlapping in the overlapping chamber i.e., two sigma bond together which is impossible" (p.12).

However, this is because a shell type presentation is being used which is suitable for considering whether a bond is single or double (or triple), but no more. In order to discuss sigma and pi bonds with their geometrical and symmetry characteristics, one must work with orbitals, not shells. 6

Yet Dr Morshed has conflated shells and orbitals throughout his paper. His figure 8a that supposedly shows "Present molecular orbital structural showing two shared paired electrons in the same overlapped chamber" does not represent (atomic, let alone molecular) orbitals, and is not intended to suggest that the space between overlapping circles is some kind of chamber.

"The remaining two opposite spin unpaired electrons in the two bonded [sic?] Oxygen's outer- most orbital [sic, shell?] getting little distorted towards the shared paired electrons in their respective atomic orbital then they feel an attraction among the opposite spin electrons thus they make a bond pairs by side to side overlapping forms the pi-bond"

Morshed, 2020, p.12.

It is not at all clear to see how this overlap occurs in this representation (i.e., 8b). Moreover, the unpaired electrons will not "feel an attraction" as they are both negatively charged even if they have anti-parallel spins. The scheme also makes it very difficult to see how the pi bond could have the right symmetry around the bond axis, if the 'new molecular orbital structure' was taken at face value.

Conclusion

Dr Morshed's paper is clearly well meant, but it does not offer any useful new ideas to progress chemistry. It is highly flawed. There is no shame in producing highly flawed manuscripts – no one is perfect, which is why we have peer review to support authors in pointing out weaknesses and mistakes in their work and so allowing them to develop their ideas till they are suitable for publication. Dr Morshed has been badly let down by the publishers and editors of Annals of Atoms and Molecules. I wonder how much he was charged for this lack of service? 7

Publishing a journal paper like this, which is clearly not ready to make a contribution to the scholarly community through publication, does not only do a disservice to the author (who will have this publication in the public domain for anyone to evaluate) but can potentially confuse or mislead students who come across the journal. Confusing shells with orbitals, misrepresenting how ionic bonds form, implying that covalent bonds are due to a force between nuclei, suggesting that electron pairs need not repel each other, suggesting a flat model of the atom with four poles… there are many points in this paper that can initiate or reinforce student misconceptions.

Supposedly, this manuscript was handled by a member of the editorial board, sent to peer reviewers and the publication decision based on those review reports. It is hard to imagine any peer reviewer who is actually an academic chemist (let alone an expert in the topics published in this journal) considering this paper would be publishable, even with extensive major revisions. The whole premise of the paper (that simple representations of atoms with concentric shells of electrons reflect the models of atomic and molecular structure used today in chemistry research) is fundamentally flawed. So:

  • were there actually any reviews? (Really?)
  • if so, were the reviews carried out by experts in the field? (Or even graduate chemists or physicists?)
  • were the reviews positive enough to justify publication?

If the journal feels I am being unfair, then I am happy to publish any response submitted as a comment below.

Dr Menaa, Prof. Ibrahim, Prof. Yoon, Dr Parigger, Dr El-Behaedi…

If you were the Board Member who handled this submission and you feel my criticisms are unfair, please feel free to submit a comment. I am happy to publish your response.

Or, if you were not the Board Member who (allegedly) handled this submission, and would like to make that clear…

Works cited:
Note:

1 I thank Professor Eric Scerri of UCLA for bringing my attention to the deliciously named 'Annals of Atoms and Molecules', and this specific contribution.

2 That is my reading of the abbreviation, although the author uses the term a number of times before rather imprecisely defining it: "Similar solution can be made for molecular orbital (MOT) as such as: The molecular orbital (MO) theory…" (p.10).

3 Renormalisation is the name given to a set of mathematical techniques used in areas such as quantum field theory when calculations give implausible infinite results in order to 'lose' the unwanted infinities. Whilst this might seem like cheating – it is tolerated as it works very well.

4 I was intrigued that 'Prof.' Farid Menaa seemed to work for a non-academic institution, as generally companies cannot award the title of Professor. Of course, Prof. Meena may also have an appointment at a university that partners the company, or could have emeritus status having retired from academia.

I found him profiled on another publisher's site as "Professor, Principal Investigator, Director, Consultant Editor, Reviewer, Event Organizer and Entrepreneur,…" who had worked in oncology, dermatology, haemotology (when "he pioneered new genetic variants of stroke in sickle cell anemia patients" which presumably is much more positive than it reads). Reading on, I found he had 'followed' complementary formations in "Medecine [sic], Pharmacy, Biology, Biochemistry, Food Sciences and Technology, Marine Biology, Chemistry, Physics, Nano-Biotechnology, Bio-Computation, and Bio-Statistics" and was "involved in various R&D projects in multiple areas of medicine, pharmacy, biology, genetics, genomics, chemistry, biophysics, food science, and technology". All of which seemed very impressive (nearly as wide a range of expertise as predatory journal publishers claim for me), but made me none the wiser about the source of his Professorial title.

5 Today. Although interestingly, in the first major comprehensive account of magnetism, Gilbert (1600/2016) tended to draw the North-South axis of the earth horizontally in his figures.

6 The representations we draw are simple depictions of something more subtle. If the circles did represent orbitals then they could not show the entire volume of space where the electron might be found (as this is theoretically infinite) but rather an envelope enclosing a volume where there is the highest probability (or 'electron density'). So orbitals will actually overlap to some extent even when simple images suggest otherwise.

7 I wonder because the appropriate page, https://scholars.direct/publication-charges.php, "was not found on this server" when I looked to see.

Chlorine atoms share electrons to fill in their shells

Umar was a participant in the Understanding Chemical Bonding project. When I spoke to him in the first term of his course he was unsure whether tetrachloromethane (CCl4) would have ionic or covalent bonding.

When I spoke to him near the start of his second term, I asked him again about this. Umar then thought this compound would have polar bonding, however he seemed to have difficulty explaining what this meant ⚗︎ . Given his apparently confused notion about the C-Cl bond I decided to turn the conversation to a covalent bond which I knew, well certainly believed, was more familiar to him.

Is it possible for chlorine to form a bond with another chlorine?

[Pause, c.2s]

Yeah.

What substance would you get if two chlorine atoms formed a bond?

[Pause, c.2s]

You get, it still, you get, if you had like two chlorines it depends what groups are attached to it, to see how electronegative or electropositive they are.

What about if you just had two chlorine atoms joined together and nothing else, is that possible?

[Pause, c.3s]

No.

No?

On their own.

Not on their own?

No.

Umar's response here rather surprised me, as I was pretty confident that Umar had met chlorine as an element, and would know it was comprised of diatomic molecules: Cl2.

So you couldn’t have sort of Cl2, a molecule of Cl2?

[Pause, c.1s]

Yeah, you could do.

Could you?

[Pause, c.2s]

They might be just, they might be like, be covalently bonded.

Perhaps the earlier context of talking about polar bonds and the trichloroethane molecule somehow acted as a kind of impediment to Umar remembering about the chlorine molecule. It seemed that my explicit reference to the formula, Cl2, (eventually) activated his knowledge of the molecule bringing to mind something he had forgotten. Although he suggested the bond was (actually "might be") covalent, this seemed less something that he confidently recalled, than something he was inferring from what he could remember – or perhaps even guessing at what seemed reasonable: "they might be just, they might be like, be covalently bonded".

As often happens in talking to learners in depth about their ideas it becomes clear that thinking of students 'knowing' or 'not knowing' particular things is a fairly inadequate way of conceptualising their cognition, which is often nuanced and context-dependent. This suggests that what students respond in written tests should be considered only as what they were triggered to write on that day in response to those particular questions, and may not fully reflect their knowledge and understanding of science topics. Other slightly different questions may well have cued the elicitation of different knowledge. Now Umar had recalled that chlorine comprises of covalent molecules, I asked him about the nature of the bond:

So what would that be, covalently bonded?

They share the electrons.

So how many electrons would they have then?

They’ll have

[Pause, c.7s – n.b., quite a long pause]

like the one on it, the one of the chlorines shares electrons with the other chlorine to fill in its shell on the other one, and the same does it with the other.

In thinking about covalent bonding, Umar (in common with many students) drew upon the full shells explanatory principle that considered bonding to be driven by the needs of atoms to 'fill' their outer electron shells. (The outer shell of chlorine would only actually be 'full' with 18 electrons, but that complication is seldom recognised, as octets and full shells are usually considered synonymous by students).

So how many electrons does each chlorine have to start with?

In the outer shell, seven.

And how many have they got after this?

They’ve got seven, but they share one.

[Pause, c.1s]

Maybe.

So that’s a covalent bond, is it?

Yeah.

So how many electrons are involved in a covalent bond?

[Pause, c.3s]

Erm,

[Pause, c.3s]

Two.

Two electrons.

So where do those two electrons come from?

They like, one that fills up the gap, fills up the – last electron needed in one of the chlorine shells, and the other chlorine shell fills it up in the other one.

So where do they come from?

Each chlorine. Outer shell.

One from each chlorine?

Yeah.

Okay, and that’d be a covalent bond?

Yeah.

Here, again, Umar is using the full shells explanatory principle as the basis for explaining the bond in terms of electrons 'filling up the gaps' in the electron shells, rather than considering how electrical interactions can hold the structure together. Umar's suggestion that the sharing of electrons "fills up the – last electron needed in one of the chlorine shells" demonstrates the anthropomorphic language (e.g., what an atom wants or needs) commonly used when learners have acquired aspects of the common octet rule framework that is developed from the full shells explanatory principle and used by many learners to explain bonding reactions, chemical reactions, patterns in ionisation energy, and chemical stability.

Covalent bonding is sharing electrons

It's covalent bonding where the electrons are shared to create a full outer shell

Keith S. Taber

Brian was a participant in the Understanding Chemical Bonding project. He was interviewed during the first year of his college 'A level' course (equivalent to Y12 of the English school system). Brian was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching. He was shown a simple representation of a covalent molecule:

Focal figure ('2') presented to Brian

Any idea what that's meant to be, number 2?

Hydrogen molecule.

Why, how do you recognise that as being a hydrogen molecule?

Because there's two atoms with one electron in each shell.

Uh hm. Er, what, what's going on here, in this region here, where these lines seem to meet?

Bonding.

That's bonding. So there's some sort of bonding there is there?

Yeah.

Can you tell me anything about that bonding?

It's covalent bonding.

So, so what's covalent bonding, then?

The electrons are shared to create a full outer shell.

Okay, so that's an example of covalent bonding, so can you tell me how many bonds there are there?

One.

There's one covalent bond?

Yeah.

Right, what exactly is a covalent bond?

It's where electrons are shared, almost, roughly equally, between the two atoms.

So that's what we'd call a covalent bond?

Yeah.

So according to Brian, covalent bonding is where "the electrons are shared to create a full outer shell". The idea that a covalent bond is the sharing of electrons to allow atoms to obtain full electron shells is a very common way of discussing covalent bonding, drawing upon the full shells explanatory principle, where a 'need' for completing electron shells is seen as the impetus for bonding, reactions, ion formation etc. This principle is the basis of a common alternative conceptual framework, the octet rule framework.

For some students, such ideas are the extent of their ways of discussing bonding phenomena. However, despite Brian defining the covalent bond in this way, continued questioning revealed that he was able to think about the bond in terms of physical interactions

Okay. And why do they, why do these two atoms stay stuck together like that? Why don't they just pull apart?

Because of the bond.

So how does the bond do that?

(Pause, c.13s)

Is it by electrostatic forces?

Is it – so how do you think that works then?

I'm not sure.

The long pause suggests that Brian did not have a ready formed response for such a question. It seems here that 'electrostatic forces' is little more than a guess, if perhaps an informed guess because charges and forces had features in chemistry. A pause of about 13 seconds is quite a lacuna in a conversation. In a classroom context teachers are advised to give students thinking time rather than expecting (or accepting) immediate responses. Yet, in many classrooms, 13 seconds of 'dead air' (to borrow a phrase from broadcasting) from the teacher night be taken as an invitation to retune attention to another station.

Even in an interview situation the interviewer's instinct may be to move on to a another question, but in situations where a researcher is confident that waiting is not stressful to the participant, it is sometimes productive to give thinking time.

Another issue relating to interviewing is the use of 'leading questions'. Teachers as interviewers sometimes slip between researcher and teacher roles, and may be tempted to teach rather than explore thinking.

Yet, the very act of interviewing is an intervention in the learners' thinking, in that whatever an interviewer tells us is in the context of the conversation set up by the interviewer, and the participant may have ideas they would not have done without that particular context. In any case, learning is not generally a once off event, as school learning relies on physiological process long after the initial teaching event to consolidate learning, and this is supported by 'revision'. Each time a memory is reactivated it is strengthened (and potentially changed).

So the research interview is a learning experience no matter how careful the researcher is. Therefore the idea of leading questions is much more nuanced that a binary distinction between those questions which are leading and those that are not. So rather than completely avoiding leading questions, the researcher should (a) use open-ended questions initially to best understand the ideas the learner most easily beings to mind; (b) be aware of the degree of 'scaffolding' that Socratic questioning can contribute to the construction of a learners' answer. [Read about the idea of scaffolding learning here.] The interview continued:

Can you see anything there that would give rise to electrostatic forces?

The electrons.

Right so the electrons, they're charged are they?

Yeah. Negatively.

Negatively charged – anything else?

(Pause, c.8s)

The protons in the nucleus are positively charged.

Uh hm. And so would that give rise to any electronic interactions?

Yeah.

So where would there be, sort of any kind of, any kind of force involved here is there?

By the bond.

So where would there be force, can you show me where there would be force?

By the, in the bond, down here.

So the force is localised in there, is it?

The erm, protons would be repelling each other, they'd be attracted by the electrons, so they're keep them at a set distance.

It seemed that Brian could discuss the bond as due to electrical interactions, although his initial ('instinctive') response was to explain the bond in terms of electrons shared to fill electron shells. Although the researcher channelled Brian to think about the potential source of any electrical interactions, this was only after Brian had himself conjectured the role of 'electrostatic forces.'

Often students learn to 'explain' bonds as electron sharing in school science (although arguably this is a rather limited form of explanation), and this becomes a habitual way of talking and thinking by the time they progress to college level study.

They're both attracting each other but this one's got a larger force

Iodine's got a larger force that lithium, so it will pull towards the lithium more 

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching.

When she was shown an image representing the electron cloud around an iodide ion polarised by an adjacent lithium ion Annie interpreted this as the iodine exerting a greater force on the lithium than vice versa.

Focal figure presented to Annie

What about this, any idea about this?

It's the same sort of thing again – the lithium combines with the iodine – to make a stable outer shell between the two, by sharing electrons, but the lithium has a smaller charge, or smaller pull than the iodine, so the actual shape of it goes in towards. It sort of goes inwards because its attracting the lithium, whereas if the lithium was attracting it, it would be like a reverse picture.

So, so the iodine's attracting what, sorry?

The lithium.

The iodine's attracting the lithium, and the lithium is not attracting the iodine?

Yeah, they're both attracting each other but because this one's got a larger force, then it will pull towards the lithium more.

The iodine's got a larger force,

Yeah.

so it will pull towards the lithium more?

Yeah.

Any image used to represented chemical bonding is necessarily a kind of model, and a partial representation – and there are a range of types of representations students meet. It is perhaps not surprising if students cannot always 'guess what the teacher (or textbook author or researcher) is thinking, and what they intend by a particular type of image.

Annie here demonstrates the common notion that chemical bonding can be based upon 'sharing' electrons (i.e., covalent bonding). At this point in her course Annie would not be expected to appreciate polar bonds or the polarisation of ions, but her prior learning that covalent bonding could be understood as 'sharing' of electrons could potentially act as an impediment to learning that the ionic-covalent bonding distinction should be seen as a spectrum, a continuous dimension, not a dichotomy.

The way forces are understood in physics is that they are interactions between two bodies, and that the same magnitude of force acts of both bodies (i.e., Newton's third law). However, students commonly consider that a 'larger' body (e.g., more massive, more highly charged) exerts a large force on the smaller body. Students do not clearly distinguish the force from its effect, and so this alternative conception seems to draw upon intuitions based on actual experience of the world (i.e., a grounded learning impediment) where larger sources (larger fires, bigger loudspeakers, larger lamps) often seem to have larger effects.

[Read about Newton's third law, and student learning difficulties]

Sharing the same shell and electron makes them more joined together like one

Keith S. Taber

Umar was a participant in the Understanding Chemical Bonding project. When I spoke to him in the first term of his advanced level chemistry course he identified figure 2 (below) as representing a hydrogen molecule, with covalent bonding.

Sharing the same shell and electron makes them more joined together like one

Umar was a participant in the Understanding Chemical Bonding Project. When I spoke to him in the first term of his advanced level chemistry course he identified figure 2 (below) as representing a hydrogen molecule, with covalent bonding.

Figure 2 (Focal image – Understanding Chemical Bonding project)

Umar suggested that covalent bonding is when atoms share electrons to combine into one whole thing. That discussion took place early in the interview, before we then discussed a whole range of other images. Near the very end of the interview I returned to ask about figure 2 again.

Interviewer: And number 2 was what kind of bond?

Umar: Covalent.

I: Now, what holds the molecule together in number 2?

U: The two electrons – shared.

I: And how does that hold them together?

U: 'cause they're sharing the same – shell and electron.

I: And why does that hold them together?

U: Makes them more, together like, makes them more like joined together like one.

After we had first discussed what this image was meant to represent early in the interview, Umar discussed a wide range of other images, and in the context of some of these he discussed bonding in terms of forces and electrical charge. As he had not mentioned such notions in the context of figure 2, even after using the ideas elsewhere, I sought to see if he recognised that forces were acting in the hydrogen molecule.

I: I see. Is there any force there holding them together?

U: It's, erm could be the charges of the electrons and the charge of the nucleus.

I: Would the nucleus have some sort of interaction with the electrons – some sort of attraction or repulsion?

U: Yeah.

I: Would it be attraction or repulsion?

U: Erm, attraction.

I: So which electron does this nucleus attract.

U: Erm, it attracts both of them, and the other one attracts both of them because they are both, like, opposite charges. So that's why they are like, around there. It might be like they move around. Around that part.

I: So they might actually move about?

U: Yeah.

I: I: But you think the two nuclei attract the two electrons?

U: Yeah.

I: Do the two electrons attract the two nuclei?

(Pause, c.3s)

U: Yeah, think so, the – yeah.

I: Yeah? Do the two electrons attract each other?

U: No, they repel.

I: Do the two nuclei attract each other?

U: No they repel.

So it seemed that Umar understood the forces acting in the covalent molecule but that these ideas were not readily cued in that context even though he readily used the idea of forces between charges to explain other kinds of chemical bonding. In the context of covalent bonding however, the notion of the bond as electron 'sharing' was cued instead. Arguably the notion of the covalent bond as sharing of electrons acted as a grounded learning impediment perhaps blocking him bringing to mind alternative ways of thinking about the bond. This could be seen as an example of weak anthropomorphism: the idea that the electrons were 'shared' stood in place of a more scientific explanation of the bonding process.

Covalent bonding is when atoms share electrons to combine into one whole thing

Keith S. Taber

Umar was a participant in the Understanding Chemical Bonding project. When I spoke to him in the first term of his advanced level chemistry course he identified figure 2 (below) as representing a hydrogen molecule, with covalent bonding.

UCB Figure 2 (for interview-about-instances technique)

Can you tell me what you think that's meant to represent?

Er, two hy-, a hydrogen molecule, 'cause it's like they've got one electron, in the only one shell, and they're joined together, a covalent bonding, and they're sharing it.

So what is a covalent bond exactly?

When they share electrons.

When you share electrons?

Yeah.

So when Umar thought of covalent bonding he seemed to primarily associate this with the notion of 'sharing' of electrons. The idea that atoms can 'share' anything could be considered an example of anthropomorphism, but this is a common metaphor that is widely used in discussing bonding.

The 'sharing' notion is however little more than a descriptive label, and has limited explanatory power. Acceptable explanations of the bond would draw upon scientific concepts, such as electrical forces, or atomic orbital overlaps allowing the formation of lower energy molecular orbitals. I probed Umar to see how he understood the nature of the covalent bond.

Or do you think they're stuck together?

I think they're quite strong together, covalent is quite a strong bond.

So that will hold them together will it?

Yeah.

Umar certainly saw the bond as a strong linkage of some kind, but so far my questions had not revealed how he understood the bond to hold the molecule together.

Well how does it do that?

It's like, they're joined together, 'cause first of all they just had two atoms with one electron each, and now they're sharing two electrons between them. So it's quite strong.

Oh, why's that?

Because the the the actual, when they share them they're like combined into like one sort of whole thing, instead of two separate atoms.

Right, so the, so the bond, which is the sharing of two electrons, that holds them together,

Yeah.

to make one thing, which we've called a molecule.

Yeah.

So at this point in Umar's course he seemed to conceptualise the covalent bonding as electron sharing and saw the action of sharing to inherently hold the molecule together, and seemed to be satisfied with that as an explanation for the bond. This discussion took place early in the interview, before we then discussed a whole range of other images. Near the very end of the interview I returned to ask about figure 2 again (see Sharing the same shell and electron makes them more joined together like one)*.

A double bond is different to a covalent bond

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching. She was shown a representation of the resonance between two canonical forms of the ethanoate ion, sometimes used to imply the delocalisation of the ionic charge across the COO- grouping.

Focal figure (13) presented to Annie

Any idea what this is?

They're organic compounds. And one's an inversion of the other.

Any idea what that arrow means in the centre of the page?

Does it mean that if you turned either of the, the O-minus, or the O that's double bonded around then you'd get the other compound? And it's exactly the same for that one if you turn that around, and you'd get, so it's like a reversible (pause, c4.s) thing.

Now what did you say about double bonded, what's this about being double bonded?

The oxygen is joined on the carbon with double bonds.

So what's a double bond? Is that, is that, you talked about covalent bonds earlier. Is a double bond the same as a covalent bond, or different to a covalent bond or?

Different.

So are there any covalent bonds, – the top one for example – are there any covalent bonds there?

Yeah.

How many covalent bonds are there?

Five.

And how many double bonds?

One.

And are there any ionic, ionic bonds?

No.

So we've got five covalent and one double.

Yeah.

Annie recognised the presence of a double bond (C=O) in the canonical forms shown, but seemed to see 'double bond' as an additional category of chemical bonding, different to covalent bonding, rather than referring to a particular type of covalent bond. So for Annie, each canonical form contained five covalent bonds (3H-C, C-C, C-O) and one double bond (C=O).

As the interview proceeded, Annie also suggested that single bonds are different to covalent bonds or ionic bonds.