A molecule is a bit of a particle – or vice versa

Keith S. Taber

Tim was a participant in the Understanding Science project. When I talked to Tim during the first term of his 'A level' (college) course, he had been studying materials with one of his physics teachers. He referred to molecules in wood (suggesting the analogy that molecules are like a jigsaw)*, and referred to a molecule as "a bit of a particle",

I: So what's a molecule?

T: Erm it's like a bit of a particle, so, something that makes up something.

He then went on to refer to how malleability depended upon atoms "because it's just what they're made out of, it's different things to make it up, different atoms and stuff". His understanding of the relationship between atoms and molecules was probed:

Ah, so we've got atoms?

Yeah.

Not molecules?

(Pause, c.2s)

This is something different this time?

Yeah.

Oh, okay, tell me about atoms.

I think, I think atoms make up molecules, which make particles. Well there's them three things, but I'm not entirely sure what order they go in, and I think atoms are the smallest one.

So we've got, these three words are related, are they, atoms, molecules, particles?

Yeah.

You think there is a relationship there?

Yeah.

And, what, they are similar in some way, but not quite the same, or?

Erm, yeah I think it's like order of size.

You think atom's the smallest?

Yeah.

And bigger than an atom you might have?

A molecule. No a particle, then a molecule, I think.

Yeah, is that the same for everything do you think? Or, are some things molecules, and some things atoms, and some things particles?

(Pause, c.2s)

I think it's the same, I think it all goes – like that.

The term 'particle' is ambiguous in school science. Sometimes by particle we mean a very small, but still macroscopic objects, such as a salt grain or a dust speck. However, often, we are referring to the theoretical submicroscopic entities such as atoms, molecules, ions, neutrons etc, which are components of our theoretical models of the structure of matter. (These particles, behave in ways that are sometimes quite unlike familiar particle behaviour because of the extent to which quantum effects can dominate at their scale. The term 'quanticle' has been proposed as a collective term for these particles.) Students are expected to know which usage of 'particles' we might mean at any given time.

Tim assumes to have misunderstood how the term particle is used (as a collective term) when used to describe quantiles, and so has come to the understanding that at this level there are three different categories of quanticle based on relative size: the atoms (the smallest), and also molecules and particles which are larger than atoms, but which he is unsure how to relate.

The use of the everyday word particle to refer to theoretical submicroscopic entities by analogy with the more familiar everyday particles is very clear to scientists and science teachers, but can act as an associative learning impediment to learners who may think that quanticle particles are just like familiar particles, but perhaps quite a lot smaller. In Tim's case, however, it seems that a different 'learning bug' had occurred. Presumably he had commonly come across the use of the terms 'atom', 'molecule' and 'particle' in science lessons to describe the components of matter at the submicroscopic level, but had not realised that particle was being used as a generic term rather than describing something different to atoms and molecules.

Quantile ontology

During his years of school science Tim had constructed a different 'ontology' of the submicroscopic constituents of matter to that expected by his teachers.

Read about learners' alternative conceptions


Author: Keith

Former school and college science teacher, teacher educator, research supervisor, and research methods lecturer. Emeritus Professor of Science Education at the University of Cambridge.

Leave a Reply

Your email address will not be published. Required fields are marked *

Discover more from Science-Education-Research

Subscribe now to keep reading and get access to the full archive.

Continue reading