A 'mind blowing' invitation

Keith S. Taber

I found a very kind invitation from an organisation calling itself "Peak Performance International" in my email Inbox this morning * ('Parents Workshop on 12th September 2015')), inviting me to a 'free' 2 hour workshop (in Nairobi) – free as long as I booked before a certain date.

The organisation claims to be run by two parents who had been concerned at their daughter's lack of progress at school and so (as one does) had travelled to various countries including "the US, Singapore, Indonesia, Malaysia" to learn about programmes of "Accelerated Learning and Brain Development". They claim that what they found was "mind blowing":

We saw children who would flip through a 200 page book of completely new material, at high speed for just a few minutes and then give an accurate account of what the book was about. Others would mentally calculate long mathematical equations and give the correct answers instantly while Professors took so long and still [did] not get the correct answer.

During our tour we attended several trainings. I learnt more about the brain than I had ever done in my whole life. I understood how easy it was to assist children tap into their genius realm and experience quantum leaps in IQ and EQ (Emotional Intelligence) by synchronizing the two brain hemispheres.

It seems Peak Performance International are now keen to share their findings with other parents, thus the invitation to their workshop. How I would have liked to think this is a genuine (even if misguided) and kind gesture. There may be the odd savant who can complete complex calculations faster than professors – but I doubt there is much that can be learnt from those to advise others. As for such extreme speed reading and retention of information: this can be understood two ways. It is either just a complete fabrication (the human brain works slowly with 'completely new material' which has to be understood in terms of familiar material, and engaged with through modest learning quanta) – or is trivial. Any good reader could actually 'flip through a 200 page book of completely new material, at high speed for just a few minutes and then give an accurate account of what the book was about' – by focusing on the blurb or an introduction. However, there would be very little knowledge of the book's detailed contents.

I am not sure whether I should be upset or pleased about this invitation. It is always annoying that some people want to cheat, mislead and swindle others. Often the widows of dictators, dying philanthropists, senior bankers or lawyers, or american military personnel seem to have a problem moving vast amounts of money out of some national jurisdiction and offer to make me rich if I help them. They clearly feel I am especially deserving or suitably skilled to undertake such projects. It is hard to have too much sympathy for anyone who is so stupid and greedy that they respond to such approaches.

Here, however, the scammers are playing upon parents who do not want to get rich quick, but just want to help their children learn more effectively and do better in school. I wonder how much money they will be asked to part with to share in the Peak Performance Programme with its surely fraudulent claims? Shame on the scammers. The only positive aspect of this sorry tale is that people consider education and learning important enough for scammers to think they can make a 'fast buck' out of the selling the pedagogic equivalent of snake oil. Perhaps this is not so different form the companies in countries like the UK where so much of professional development in the education sector has become commercialised, with 'providers' selling programmes in 'learning styles' which often have very little evidential support. (There is good research into some models of learning styles – but where popular ideas like VAK work this is likely either placebo, or the focus on multi-model teaching, rather than the underlying model which is more a distortion of multiple intelligence theory than based on the research on student learning styles.)

When I first saw the email I seriously wondered if this was a genuine but misguided or exaggerated attempt to apply genuinely effective learning/study techniques. I was persuaded otherwise by a link in the email that directed me to "one of our students". Actually this was a 'youtube' video of a young boy on a television programme who allegedly could read whilst blindfolded. He struggled to read an autocue whilst blindfolded – although to be fair he struggled equally to read the same autocue before the blindfold was put on. Looking at the video, and in particular how the boy angled his head, I very much suspect he was looking through the fabric of the black eyeshades (in the section of the programme I watched it did not seem to have occurred to the presenter to provide his own blindfold). Even if this was a genuine sensory skill and not the trick it seemed to be, it appeared to have nothing to do with "Accelerated Learning and Brain Development" or Peak Performance International.

* First published 7th September, 2015

The moon is a long way off and it is impossible to get there

Does our whole system of physics forbid us from believing someone has been on the moon?

Keith S. Taber

Image by WikiImages from Pixabay (with Emoji superimposed)

I never had the chance to interview Ludwig for my research, but was intrigued when I found out about his outright dismissal of the possibility of manned missions to the moon.

There are of course people who are strongly committed to ideas at odds with current scientific consensus – suggesting the earth is flat; that evolution does not occur; that COVID-19 was deliberately produced in a laboratory; that governments have physical evidence of alien visitors, but deny it and keep all relevant documentation classified; and so forth.

Moon landing deniers

Even in the United States of America, the home of the Apollo missions, surveys regularly show that a substantial minority of people doubt that people ever actually went to the moon, and think the Apollo moon landings were faked. Why would NASA have gone to such trouble with the collusion of the US Government machinery and the support of Hollywood studios?

As President Kennedy had put such weight on (American) people getting to the moon before the end of the 1960s, then – the argument goes – once it became clear this was technically impossible, it became important to convince the population that JFK's challenge had been met by a massive initiative to forge and disseminate evidence. There has been something of an industry in explaining how the photographs released by NASA can be seen to have been clearly faked if one looks carefully enough and knows a little science.

Unreasonable doubt?

I try to be someone who is always somewhat sceptical (as any scientist should be) of any claims, no matter how widely believed, as in time some canonical ideas are found to be flawed – even in science. But I tend to give little credence to such conspiracy theories.

Sometimes there are good reasons why science is doubted by sections of the public when it seems to conflict with well established world-view beliefs deriving from religious traditions or traditional ecological knowledge which has sustained a culture for a great many generations. So, even when the science is well supported, we can sometimes understand why some people find it difficult to accept. But the Apollo missions being faked in a film studio: surely that is just the kind of nonsense that only ignorant cranks like to believe – isn't it?

Ludwig on the sure belief that no one has been to the moon

Thus my interest in Ludwig, who was certainly not an ignorant person. Indeed he was highly intelligent, and something of an intellectual – a deep thinker who was very interested in the nature of knowledge and considered issues of how we could ground our beliefs, given that the evidence was never sufficient to be absolutely sure.

He thought that individual ideas were convincing when they were embedded in a 'nest' of related ideas – what we might call a conceptual framework. One example he discussed was his accepting that people always had parents: he thought this "sure belief" was based "not only on the fact that I have known the parents of certain people but on everything that I have learnt about the sexual life of human beings and their anatomy and physiology: also on what I have heard and seen of animals". Ludwig thought that although this could not be considered definite proof, it was robust grounds for someone to accept the belief.

Another example of such a sure belief was that a person could be confident that they had never been on the moon,

A principal ground for [a person] to assume that he was never on the moon is that no one ever was on the moon or could come [i.e., get] there; and this we believe on grounds of what we learn.

¶171

Physics forbids moon landings

Ludwig seemed to consider the impossibility of people getting to be on the moon was something he could be pretty sure of,

"But is there no objective truth? Isn't it true, or false, that someone has been on the moon?" If we are thinking within our system, then it is certain that no one has ever been on the moon. Not merely is nothing of the sort ever seriously reported to us by reasonable people, but our whole system of physics forbids us to believe it. For this demands answers to the questions "How did he overcome the force of gravity?" "How could he live without an atmosphere?" and a thousand others which could not be answered…

The intellectual status of unreasonable people

So someone making such a claim would not be a 'reasonable' person in Ludwig's evaluation. So how would Ludwig feel about such an unreasonable person?

We should feel ourselves intellectually very distant from someone who said this.

¶108

But of course there are people who claim this has indeed happened, that we have been to the moon,and walked there and whilst there collected rocks and indeed played golf. (Had this been more recent, we would perhaps instead have danced the tango and baked cakes.) NASA astronauts have since often acted as ambassadors for space science, and told their stories across the world, including to the young – enthusing many of them about space and science.

How might Ludwig respond to a child who had met one of those Apollo astronauts who claimed to have walked on the moon?

Suppose some adult had told a child that he had been on the moon. The child tells me the story, and I say it was only a joke, the man hadn't been on the moon, no one has ever been on the moon, the moon is a long way off and it is impossible to climb up there or fly there.

Ludwig adds, rhetorically,

If now the child insists, saying perhaps there is a way of getting there which I don't know, etc. what reply could I make to him?

¶106

Believers in moon landings are ignorant and wrong

So how could Ludwig explain that there are many people, indeed a majority today, who do believe that people have visited the moon, and returned to earth to tell others about the experience?

What we believe depends on what we learn. We all believe that it isn't possible to get to the moon; but there might be people who believe that that is possible and that it sometimes happens. We say: these people do not know a lot that we know. And, let them be never so sure of their belief-they are wrong and we know it.

If we compare our system of knowledge with theirs then theirs is evidently the poorer one by far.

¶286

So, just as I might suspect the moonshot deniers are somewhat ignorant, for Ludwig it is the reverse: it is those who think people can get to the moon who have poor knowledge systems and are simply wrong.

Now I suggested above that Ludwig was an intelligent and reflective person – indeed he worked as a school teacher, both in primary and secondary education – so his views may seem incongruent. As some readers may have suspected, I am being a little unfair to Ludwig. I pointed out at the outset that I never had the chance to interview Ludwig – indeed I never met him, although he did spend part of his life in Cambridge where I now work.

We can all be wrong

Ludwig did not live to see the moon landings, as he died in 1951 almost a decade before I was born (of parents – he was right about that), shortly after he wrote the material that I have quoted above. That is a few years before Sputnik was launched by the Soviet Union and the 'space race' began. So, Ludwig was not a denier of the moon landings as such, refusing to accept the media accounts, but rather a denier of the possibility of there ever being moon landings at a time when no one was yet actively planning the feat.

Ludwig was wrong. But had he lived another 20 years I am pretty sure he would have changed his mind. That's because one of the things he was best known for was changing his mind.

Having written a highly influential book of philosophy that convinced many intellectuals he was one of the greatest thinkers of his time, if not all time (the Tractatus Logico-Philosophicus) he took a long sabbatical from Academia, only to later write an equally influential and profound book (that he did not live to see published – the Philosophical Investigations) that contradicted his earlier ideas. Had Ludwig seen the technological developments of the 'space race' in the 1960s, it seems certain – well, a sure belief – that he would have accepted the possibility of people going to the moon.

However, when I first read the comments I quote above I was struck by how such a highly intelligent and deep thinker could be so sure that getting people to the moon was not possible that he actually chose to use the idea of people on the moon as an exemplar of something that was impossible ("it is certain that no one has ever been on the moon"), and indeed contrary to the laws of physics.

Presumably at the time he was writing he could assume most intelligent people would fully accept his position (as "we all believe that it isn't possible to get to the moon") and see the suggestion of people going to the moon as absurd enough to stand as an example of an idea that could not be accepted by us reasonable people, only by someone "intellectually very distant" from us.

However, barely a decade later JFK was convinced enough of the possibility of getting people safely to the moon and back to commit his nation to achieving it – and a decade after that men being on the moon was already ceasing to be seen as anything out of the ordinary (until the near disaster of the Apollo 13 mission got the flights back into the popular imagination).

I do not present this example to ridicule Ludwig Wittgenstein. Far from it. But it does make me reflect on those things that we think we can treat as 'sure beliefs'. Even the most intelligent and reflective of us can be very wrong about things we may treat as certain knowledge. That's always worth keeping in mind.

Nothing is absolutely certain, except, perhaps, uncertainty itself!

All citations are from ¶ in Wittgenstein, L. (1975). On Certainty (D. Paul & G. E. M. Anscombe, Trans. G. E. M. Anscombe & G. H. v. Wright Eds. Corrected 1st ed.). Malden, Massachusetts: Blackwell Publishing.

Higher resistance means less current for the same voltage – but how does that relate to the formula?

Image by Gerd Altmann from Pixabay 

The higher resistance is when there is less current flowing around the circuit when you have the same voltage – but how does that relate to the formula?

Adrian was a participant in the Understanding Science Project. When I interviewed him in Y12 when he was studying Advanced level physics he told me that "We have looked at resistance and conductance and the formulas that go with them" and told me that "Resistance is current over, voltage, I think" although he did not think he could remember formulae. He thought that an ohm was the unit that resistance is measured in, which he suggested "comes from ohm's law which is the…formula that gives you resistance".

Two alternative conceptions

There were two apparent alternative conceptions there. One was that 'Resistance is current over voltage', but as Adrian believed that he was not good at remembering formulae, this would be a conception to which he did not have a high level of commitment. Indeed, on another occasion perhaps he would have offered a different relationship between R, I, and V. I felt that if Adrian had a decent feel for the concepts of electrical resistance, current and voltage then he should be able to appreciate that 'resistance is current over voltage' did not reflect the correct relationship. Adrian was not confident about formulae, but with some suitable leading questioning he might be able to think this through. I describe my attempts to offer this 'scaffolding' below.

The other alternative conception was to conflate two things that were conceptually different: the defining equation for resistance (that R=V/I, by definition so must be true) and Ohm's law that suggests for certain materials under certain conditions, V/I will be found to be constant (that is an empirical relationship that is only true in certain cases). (This is discussed in another post: When is V=IR the formula for Ohm’s law?)

So, I then proceeded to ask Adrian how he would explain resistance to a younger person, and he suggested that resistance is how much something is being slowed down or is stopped going round. After we had talked about that for a while, I brought the discussion back to the formula and the relationship between R, V and I.

Linking qualitative understanding of relating concepts and the mathematical formula

As Adrian considered resistance as slowing down or stopping current I thought he might be able to rationalise how a higher resistance would lead to less current for a particular potential difference ('voltage').

Okay. Let’s say we had, erm, two circuits, and they both have resistance and you wanted to get one amp of current to flow through the circuits, and you had a variable power supply.

Okay.

And the first circuit in order to get one (amp) of current to flow through the circuit.

Yes.

You have to adjust the power supply, until you had 10 volts.

Okay.

So it took 10 volts to get one amp to flow through the circuit. And the second (unclear) the circuit, when you got up to 10 volts, (there is) still a lot less than one amp flowing. You can turn it up to 25 volts, and only when it got to 25 volts did you get one amp to flow through the circuit.

Yes, okay.

In mathematical terms, the resistance of the first circuit is (R = V/I = 10/1 =) 10Ω, and the second is (25/1 =) 25Ω, so the second – the one that requires greater potential difference to drive the same current, has more resistance.

Do you think those two circuits would have resistance?

Erm, (pause, three seconds) Probably yeah.

This was not very convincing, as it should have been clear that as an infinite current was not produced there must be some resistance. However, I continued:

Same resistance?

No because they are not the same circuit, but – it would depend what components you had in your circuit, if you had different resistors in your circuit.

Yeah, I've got different resistors in these two circuits.

Then yes each would have a different resistance.

Can you tell me which one had the bigger resistance? Or can’t you tell me?

No, I can’t do that.

You can’t do it?

No I don’t think so. No.

Adrian's first response, that the circuits would 'probably' have resistance, seemed a little lacking in conviction. His subsequent responses suggested that although he knew there was a formula he did not seem to recognise that if different p.d.s were required to give the same current, this must suggest there was different resistance. Rather he argued from a common sense position that different circuits would be likely to have different components which would lead to them having different resistances. This was a weaker argument, as in principle two different circuits could have the same resistance.

We might say Adrian was applying a reasonable heuristic principle: a rule of thumb to use when definite information was not available: if two circuits have different components, then they likely they have different resistance. But this was not a definitive argument. Here, then, Adrian seemed to be applying general practical knowledge of circuits, but he was not displaying a qualitative feel for what resistance in a circuit was about in term of p.d. and current.

I shifted my approach from discussing different voltages needed to produce the same current, to asking about circuits where the same potential difference would lead to different current flowing:

Okay, let me, let me think of doing it a different way. For the same two circuits, erm, but you got one let's say for example it’s got 10 volts across it to get an amp to flow.

Yeah. So yes okay so the power supply is 10 volts.

Yeah. And the other one also set on 10 volts,

Okay.

but we don’t get an amp flow, we only get about point 4 [0.4] of an amp, something like that, to flow.

Yeah, yeah.

Any idea which has got the high resistance now?

The second would have the higher resistance.

Why do you say that?

Because less erm – There’s less current amps flowing around the circuit erm when you have the same voltage being put into each circuit.

Okay?

Yes.

This time Adrian adopted the kind of logic one would hope a physics student would apply. It was possible that this outcome was less about the different format of the two questions, and simply that Adrian had had time to adjust to thinking about how resistance might be linked to current and voltage. [It is also possible too much information was packed close together in the first attempt, challenging Adrian's working memory capacity, whereas the second attempt fed the information in a way Adrian could better manage.]

You seem pretty sure about that, does that make sense to you?

Yes, it makes sense when you put it like that.

Right, but when I had it the other way, the same current through both, and one required 10 volts and one required 25 volts to get the same current.

Yes.

You did not seem to be too convinced about that way of looking at it.

No. I suppose I have just thought about it more.

Having made progress with the fixed p.d. example, I set Adrian another with constant current:

Yes. So if I get you a different example like that then…let’s say we have two different circuits and they both had a tenth of an amp flowing,

Okay. Yes.

and one of them had 1.5 volt power supply

Okay yes.

and the other one had a two volt power supply

Yeah.

but they have both got point one [0.1] of an amp flowing. Which one has got the high resistance?

Currents the same, I would say they have got different voltages, yeah, so erm (pause, c.6s) probably the (pause, c.2s) the second one. Yeah.

Because?

Because there is more voltage being put in, if you like, to the circuit, and you are getting less current flowing in and therefore resistance must be more to stop the rest of that.

Yes?

I think so, yes.

Does that make sense to you?

Yeah.

So this time, having successfully thought through a constant p.d. example, Adrian successfully worked out that a circuit that needed more p.d. to drive a certain level of current had greater resistance (here 2.0/0.1 = 20Ω) than one that needed a smaller p.d. (i.e. 1.5/0.1 = 15Ω). However, his language revealed a lack of fluency in using the concepts of electricity. He referred to voltage being "put in" to the circuits rather than across them. Perhaps more significantly he referred to their being "less current flowing in" where there was the same current in both hypothetical circuits. It would have been more appropriate to think of there being proportionally less current. He also referred to the greater resistance stopping "the rest" of the current, which seemed to reflect his earlier suggestion that resistance is how much something is being slowed down or is stopped going round.

My purpose in offering Adrian hypothetical examples, each a little 'thought experiment', was to see if they allowed him to reconstruct the formula he could not confidently recall. As he had now established that

greater p.d. is needed when resistance is higher (for a fixed current)

and that

less current flows when resistance is higher (for a fixed p.d.)

he might (perhaps should) have been able to recognise that his suggestion that "resistance is current over, voltage" was inconsistent with these relationships.

Okay and how does that relate to the formula you were just telling me before?

Erm, No idea.

No idea?

Erm (pause, c.2s) once you know the resistance of a circuit you can work out, or once you know any of the, two of the components you can work out, the other one, so.

Yeah, providing you know the equation, when you know which way round the equation is.

Yes providing you can remember the equation.

So can you relate the equation to the explanations you have just given me about which would have the higher resistance?

So if something has got a higher resistance, so (pause, c.2s) so the current flowing round it would be – the resistance times the voltage (pause, c.2s) Is that right? No?

Erm, so the current is resistance time voltage? Are you sure?

No.

So Adrian suggested the formula was "the current flowing round it would be the resistance times the voltage", i.e., I = R × V (rather than I = V /R ), which did not reflect the qualitative relationships he had been telling me about. I had one more attempt at leading him through the logic that might have allowed him to deduce the general form of the formula.

Go back to thinking in terms of resistance.

Okay.

So you reckoned you can work out the resistance in terms of the current and the voltage?

Yes, I think.

Okay, now if we keep, if we keep the voltage the same and we get different currents,

Yes.

Which has, Which has got the higher resistance, the one with more current or the one with less current?

Erm (Pause, c.6s) So, so, if they keep the same voltage.

That’s the way we liked it the first time so.

Okay.

Let’s say we have got the same voltage across two circuits.

Yes.

Different amounts of current.

Yes.

Which one’s got the higher resistance? The one with more current or the one with less current?

The one with less current.

So less current means it must be more resistance?

Yes.

Ok, so if we had to have an equation R=.

Yes.

What’s it going to be, do you think?

Erm 

(pause, c.7s)

R=

(pause, c.3s)

I don’t know. It's too hard.

Whether it really was too hard for Adrian, or simply something he lacked confidence to do, or something he found too difficult being put 'on the spot' in an interview, is difficult to say. However it seems fair to suggest that the kind of shift between qualitative relationships and algebraic representation – that is ubiquitous in studying physics at this level – did not come readily to this advanced level physics student.

I had expected my use of leading (Socratic) questioning would provide a 'scaffold' to help Adrian appreciate he had misremembered "resistance is current over, voltage, I think", and was somewhat disappointed that I had failed.



Resistance is how much something is being slowed down

Image by Dimitris Doukas from Pixabay 

"Resistance is how much something is being slowed down or is stopped going round"

Adrian was a participant in the Understanding Science Project. When I interviewed him in Y12 when he was studying Advanced level physics he told me that "We have looked at resistance and conductance and the formulas that go with them". However, when asked about the formula, he suggested, without conviction, that "resistance is current over voltage". So, I asked him how he might go about explaining resistance to a younger student:

We will come back to the formula in a minute then, so let us say you had a younger brother or sister who hasn’t done much physics.

Yes.

And doesn’t do, doesn’t like maths, doesn’t like formulas.

Okay.

So what does it mean though? Why is it important? What’s resistance about?

Erm – I would say it was how much something is being slowed down, or erm how much it is being stopped going round. If it is in electric¬… electricity then it is in a circuit. If it’s in like the wide open range of things it's like erm how resistant is something if you push it? How much force does it give back?

So Adrian was aware of electrical resistance, and also aware of resistance in the context of mechanics.

Oh I see, so, erm if I asked you to push that table over there

Yes.

There might be resistance to that?

Yes.

And that’s different to if we were talking about meters and wires and things?

Yes.

Are they similar in some way?

They have got the same name. {laughs}

Got the same name, okay.

They probably are similar. I've never really thought about it.

So although Adrian associated electrical resistance with 'resistance' in mechanical situations, the similarity between the two types of resistance seemed primarily due to the use of the same linguistic label. This was despite him describing the two forms of resistance in similar terms – "how much something is being slowed down… how much it is being stopped going round" cf. "how resistant is something if you push it".

To a physicist, a property such as resistance should be defined precisely, and therefore preferably mathematically – and so operationally in the sense that there is no ambiguity in how it would be measured. However when students are learning, definitions and formulae may be abstract and have little meaning or connection to experience, so qualitative understanding is important. Students' initial suggestions of what technical terms mean when they first learn about them may be vague and flawed, but if this is linked to a feeling for the concept this may ultimately be a better starting point than a formula which cannot be interpreted meaningfully – as seemed to be the case with Adrian.

Arguably, understanding a relationship in qualitative terms can support later formalising the relationship in mathematical terms, whereas trying to learn a formulae by rote may lead to misremembering and algorithmic application (and so, for example, not noticing when non-feasible results are calculated).

Adrian's suggestion that resistance might be"how resistant is something if you push it? How much force does it give back?" presumably linked to his own experiences of pushing and pulling objects around. However, it seemed to confuse notions of inertia and reaction force (as well as possibly frictional forces). If Adrian were to push with a force of 100N on the wall of a building, a puck on an ice rink, or on a sledge on gravel the reaction force would be 100N in each case (cf. Newton's third law) – although the subjective experience of resistance would be very different in the different situations – as would the outcome on the object pushed.

In these situations it may be difficult for a teacher to know if a vague or confused description reflects conceptual confusion (and/)or limited expression. Yet, students need time and opportunities to be able to explore concepts in their own terms to link the abstract scientific ideas with the 'spontaneous conceptions' they have developed based on their own experiences of acting in the world.

The teacher should offer feedback, and model clear language, but needs to recognise that understanding abstract scientific ideas takes time. After all, Aristotle would be considered to have alternative conceptions of mechanics by comparison with today's science, but Aristotle was clearly highly intelligent and gave the matter a lot of thought!

After this there was extended discussion on the way resistance related to current and voltage, following Arian's comment that resistance is current over voltage. As part of this he was asked about ⚗︎ an example where different voltages were needed in different circuits to allow the same current to flow. ⚗︎ He suggested that the circuit with the higher resistance would be the one where "there is more voltage being put in, if you like, to the circuit, and you are getting less current flowing in, and therefore resistance must be more to stop the rest of that".

Adrian's way of talking about the current in the circuits did not seem to reflect a view of current as driven by a given p.d. across a circuit and limited by a certain resistance, but almost as a fixed potential flow, some of which would be permitted to pass, but some of which would be stopped by the resistance ("how much it is being stopped going round", "resistance … to stop the rest of that"). Yet, as suggested above, it can take time, and opportunities for exploration and discussion, for students' concepts and ways of talking about them to mature towards canonical science.

That Adrian could talk of "more voltage…less current…therefore resistance must be more" seemed promising, although ⚗︎ Adrian could not relate his qualitative description to the mathematical representation of the formula. ⚗︎


When is V=IR the formula for Ohm's law?

"Resistance is current over voltage, I think"

Image by Gerd Altmann from Pixabay 

Adrian was a participant in the Understanding Science Project. When I interviewed him in Y12 when he was studying Advanced level physics he told me that "We have looked at resistance and conductance and the formulas that go with them". So I asked him was resistance was:

So what exactly is resistance?

Resistance is, erm (pause, c.3s) Resistance is current over, voltage, I think. (Pause, c.3s) Yeah. No.

Not sure?

I can’t remember formulas.

So Adrian's first impulse was to define resistance using a formula, although he did not feel he was able to remember formulae. He correctly knew that the formula involved resistance, current and voltage, but could not recall the relationship. Of course if he understood qualitatively how these influenced each other, then he should have been able to work out which way the formula had to go, as the formula represents the relationship between resistance, voltage and current.

So, I then proceeded to ask Adrian how he would explain resistance to a younger person, and he suggested that resistance is how much something is being slowed down or is stopped going round. After we had talked about that for a while, I brought the discussion back to the formula and the relationship between R, V and I:

And what about this resistance in electricity then, do you measure that in some kind of unit?

Yes, in, erm, (pause, c.2s) In ohms.

So what is an ohm?

Erm, an ohm is, the unit that resistance is measured in.

Fair enough.

It comes from ohm's law which is the, erm, formula that gives you resistance.

V=IR is the formula that gives you resistance, but it is a common misconception, that Ohm's law is V=IR.

Actually, Ohm's law suggests that the current through a metallic conductor (kept at constant conditions, e.g., temperature) is directly proportional to the potential difference across its ends.

So, in such a case (a metal that is not changing temperature, etc.)

I ∝ V

which is equivalent to

V ∝ I

which is equivalent to

V = kI

where k is a constant of proportionality. If we use the symbol R for the constant in this case then

V= RI

which is equivalent to

V = IR

 So, it may seem I have just contradicted myself, as I denied that V=IR was a representation of Ohm's law, yet seem to have derived V=IR from the law.

There is no contradiction as long as we keep in mind what the symbols are representing in the equation. I represented the current flowing through a metallic conductor being held at constant conditions (temperature, tension etc.), and V represented the potential difference across the ends of that metallic conductor. If we restrict V and I to this meaning then the formula could be seen as a way of representing Ohm's law.

Over-generalising

However, that is not how we usually understand these symbols in electrical work: V generally represents the potential difference across some resistive component or other, and I represents the current flowing through that component: a resistor, a graphite rod, a salt bridge, a diode, a tungsten filament in a lamp…

In this general case

V = IR

or

R = V/I

is the defining equation for resistance. If R is defined as V/I then it will always be the case, not because there is a physical law that suggests this, but simply because that is the meaning we have given to R.

This is a bit like bachelors being unmarried men (an example that seems to be a favourite of some philosophers): bachelors are not unmarried men because there is some rule or law decreeing that bachelors are not able to get married, but simply because of our definition. A bachelor who gets married and so becomes a married man ceases to be a bachelor at the moment they become a married man – in a similar way to how a butterfly is no longer a caterpillar. Not because of some law of nature, but by our conventions regarding how words are used. If V and I are going to be used as general symbols (and not restricted to our carefully controlled metallic conductor) then V = IR simply because R is defined as V/I and the formula, used in the general case, should not be confused with Ohm's law.

In Ohm's law, V=IR where R will be constant.

In general, V=IR and R will vary, as Ohm's law does not generally apply.

It would perhaps be better for helping students see this had there been a convention that the p.d. across, and the current through, a piece of metal being kept in constant conditions were represented by, say V and I, so Ohm's law could be represented as, say

V = k I

but, as this is not the usual convention, students need to keep in mind when they are dealing with the special case to which Ohm's law refers.

A flawed teaching model?

The interesting question is whether:

  • teachers are being very careful to make this distinction, but students still get confused;
  • teachers are using language carefully, but not making the discrimination explicit for students, so they miss the distinction;
  • some teachers are actually teaching that V=IR is Ohm's law.

If the latter option is the case , then it would be good to know if the teachers teaching this:

  • have the alternative conception themselves;
  • appreciate the distinction, but think it does not matter;
  • consider identifying the general formula V=IR with Ohm's law is a suitable simplification, a kind of teaching model, suitable for students who are not ready to have the distinction explained.

It would be useful to know the answers to these questions, not to blame teachers, but because we need to diagnose a problem to suggest the best cure.



Many generations later it's just naturally always having fur

Keith S. Taber

Image by MirelaSchenk from Pixabay 

Bert was a participant in the Understanding Science Project. In Y11 he reported that he had been studying about the environment in biology, and done some work on adaptation. he gave a number of examples of how animals were adapted to their environment. One of these examples was the polar bear.

our homework we did about adapting, like how polar bears adapt to their environments, and camels….

And so a polar bear has adapted to the environment?

Yeah.

So how has a polar bear adapted to the environment?

Erm, things like it has white fur for camouflage so the prey don't see it coming up. Large feet to spread out its weight when it's going over like ice. Yeah, thick fur to keep the body heat insulated.

Bert gave a number of other examples, including dogs that were bred with particular characteristics, although he explained this in terms of inheritance of acquired characteristics: suggesting that dogs that have been taught over and over to retrieve have puppies that automatically have already got that sense. Bert realised that his example was due to the work of human breeders, and took the polar bear as an example of a creature that had adapted to its environment.

Yeah, so how does adaption take place then? …

I don't know. It may have something to do with negative feedback.Like you have like, you always get like, you always get feedback, like in the body to release less insulin and stuff like that. So in time … organisms, learn to adapt to that. Because if it happens a lot that makes a feedback then it comes, yeah then they just learn to do that.

Okay. Give me an example of that. I'm trying to link it up in my head.

Okay, like the polar bear, like I don't know. It may have started off just like every other bear, but because it was put in that environment, like all the time the body was telling it to grow more fur and things like that, because it was so cold. So after a while it just adapted to, you know, always having fur instead of, you know, like dogs shed hair in the summer and stuff. But like if it was always then they'd just learn to keep shedding that hair.

So if it was an ordinary bear, not a polar bear, and you stuck it in the Arctic, it would get cold?

Yeah.

But you say the body tells it to grow more fur?

Erm, yeah.

How does that work?

I'm not sure, it just … I don't know. Like, erm, like the body senses that it's cold, it goes to the brain, and the brain thinks, well how is it going to go against that, you know, make the body warmer. And so it kind of, you know, it gives these things.

So Bert seemed to have notion of (it not the term) homoeostasis, that allowed control of such things as levels of insulin. He recognised thus was based on negative feedback – when some problematic condition was recognised (e.g. being too cold) this would trigger a response (e.g., more insulation) to bring about a countering change.

However, in Bert's model, the mechanism was not initially automatic. Bert thought that this process which initially was based on deliberation became automatic over many generations…

I see. So the bear has already got a mechanism which would enable it to have more fur, but it's turned on to some extent by being put into the cold?

Yeah.

And then over a period of time, what happens then?

Erm I guess it just it doesn't really need that impulse of being cold, it's just naturally there now, to tell it to do it more.

So how does that happen? Is this the same bear or is this many generations later?

I would probably think many generations later.

Right, so if it was just one particular bear, it wouldn't eventually just produce more hair automatically itself, but its offspring eventually might?

Yeah.

So how does that happen then?

I don't know. Probably from DNA or something. We haven't gone over that yet.

So for Bert, the individual bear could change its characteristics through activating a potential mechanism (in this case for keeping year-round thick fur) through a process of sensing and responding to environmental conditions. Over many generations this changed characteristic could become an automatic response by eventually being coded into the genetic material. As with his explanation of selective breeding, Bert invoked a model of evolution through the inheritance of acquired characteristics, rather than the operation of natural selection on the natural range of characteristics within a breeding population.

Like many students learning about evolution, Darwin's model of variation offering the basis for natural selection was not as intuitively appealing as a more Lamarckian idea that individuals managed to change their characteristics during their lives and pass on the changes to their offspring. This is an example of where student thinking reflects a historical scientific theory that has been discarded rather than the currently canonical scientific ideas taught in schools.

The brain thinks: grow more fur

The body senses that it's cold, and the brain thinks how is it going to make the body warmer?

Keith S. Taber

Image by Couleur from Pixabay 

Bert was a participant in the Understanding Science Project. In Y11 he reported that he had been studying about the environment in biology, and done some work on adaptation. he gave a number of examples of how animals were adapted to their environment. One of these examples was the polar bear.

our homework we did about adapting, like how polar bears adapt to their environments, and camels….

And so a polar bear has adapted to the environment?

Yeah.

So how has a polar bear adapted to the environment?

Erm, things like it has white fur for camouflage so the prey don't see it coming up. Large feet to spread out its weight when it's going over like ice. Yeah, thick fur to keep the body heat insulated.

Bert gave a number of other examples, including dogs that were bred with particular characteristics, although he explained this in terms of inheritance of acquired characteristics: suggesting that dogs that have been taught over and over to retrieve have puppies that automatically have already got that sense. Bert realised that this example was due to the work of human breeders, and took the polar bear as an example of a creature that had adapted to its environment.

Yeah, so how does adaption take place then? You've got a number of examples there, bears and dogs and camels and people. So how does adaption take place?

I don't know. It may have something to do with negative feedback.

That's impressive.

Like you have like, you always get like, you always get feedback, like in the body to release less insulin and stuff like that. So in time people like or whatever, organisms, learn to adapt to that. Because if it happens a lot that makes a feedback then it comes, yeah then they just learn to do that.

Okay. Give me an example of that. I'm trying to link it up in my head.

Okay, like the polar bear, like I don't know. It may have started off just like every other bear, but because it was put in that environment, like all the time the body was telling it to grow more fur and things like that, because it was so cold. So after a while it just adapted to, you know, always having fur instead of, you know, like dogs shed hair in the summer and stuff. But like if it was always then they'd just learn to keep shedding that hair.

So if it was an ordinary bear, not a polar bear, and you stuck it in the Arctic, it would get cold?

Yeah.

But you say the body tells it to grow more fur?

Erm, yeah.

How does that work?

I'm not sure, it just … I don't know. Like, erm, like the body senses that it's cold, it goes to the brain, and the brain thinks, well how is it going to go against that, you know, make the body warmer. And so it kind of, you know, it gives these things.

Is that an example of feedback?

Yes.

So Bert seemed to have notion of (it not the term) homoeostasis, that allowed control of such things as levels of insulin. He recognised thus was based on negative feedback – when some problematic condition was recognised (e.g. being too cold) this would trigger a response (e.g., more insulation)to bring about a countering change.

However, in Bert's model, the mechanism was not automatic. Rather it depended upon conscious deliberation: "the brain thinks, well how is it going to …make the body warmer". Bert thought that this process which initially was based on deliberation then became automatic over many generations.

This seems to assume that bears think in similar terms to humans, that they identify a problem and reason a way through. This might be considered an example of anthropomorphism, something that is very common in student (indeed human) thinking. To what extent it may be reasonable to assign this kind of conscious reasoning to bears is an open question.

However there was a flaws in the process described by Bert that he might have spotted himself. This model suggested that once the bear had become aware of the issue, and the needs to address, it would be able to grow its fur accordingly. That is, as a matter of will. Bert would have been aware that he is able to control some aspects of his body voluntarily (e.g., to raise his arm), but he cannot will his hair to grow at a different rate.

Of course, it may be countered that I am guilty of a kind of anthropomorphism-in-reverse: Bert is not a bear, but rather a human who does not need to control hair growth according to environment. So, just because Bert cannot consciously control his own hair growth, this need not imply the same is true for a bear. However, Bert also used the example of insulin levels, very relevant to humans, and he would presumably be aware that insulin release is controlled in his own body without his conscious intervention.

As often happens in interviewing students (or human conversations more generally) time to reflect on the exchange raises ideas one did not consider at the time, that one would like to be able to to text out by asking further questions. If things that were once deliberate become instinctive over time, then it is not unreasonable in principle to suggest things that are automatic now (adjusting insulin levels to control blood glucose levels) may have once been deliberate.

After all, people can control insulin levels to some extent by choosing to eat a different diet. And indeed people can learn biofeedback relaxation techniques that can have an effect on such variables as blood pressure, and some diabetics have used such techniques to reduce their need for medical insulin. So, did Bert think that people had once consciously controlled insulin levels, but over generations this has become automatic?

In some ways this does not seem a very likely or promising idea – but that is a judgement made from a reasonably high level of science knowledge. It is important to encourage students to use their imaginations and suggest ideas as that is an important aspect of how science woks. Most scientific conjectures are ultimately wrong, but they may still be useful tools for moving science on. In the same way, learners' flawed ideas, if explored carefully, may often be useful tools for learning. At the time of the interview, I felt Bert had not really thought his scheme through. That may well have been so, but there may have been more coherence and reflection behind his comments than I realised at the time.

A wooden table is solid…or is it?

Keith S. Taber

Wood (cork coaster captured with Veho Discovery USB microscope)

Bill was a participant in the Understanding Science Project. Bill (Y7) was explaining that he had been learning about the states of matter, and introduced the notion of there being particles:

So how do you know if something is a solid, a liquid or a gas?

Well, solids they stay same shape and their particles only move a tiny bit

So what are these particles then?

Erm, they're the bits that make it what it is, I think.

Ah. So are there any solids round here?:

Yeah, this table. [The wooden table Bill was sitting at.]

That's a solid, is it?:

Yeah

Technically the terms solid, liquid and gas refer to samples of substances and not objects. From a chemical perspective a table is not solid. A wooden table (such as those in the school laboratory where I talked to Bill) is made of a complex composite material that includes various different substances such as a lignin and cellulose in its structure.

Wood contains some water, and has air pockets, so technically wood is not a solid to a chemist. However, in everyday life we do thing of objects such as tables as being solid.

Yet if wood is heated, water can be driven off. Timber can be mostly water by weight, and is 'seasoned' to remove much of the water content before being used as a construction material. Under the microscope the complex structure of woods can be seen, including spaces containing air.

Bill also suggested that a living plant should be considered a solid.

I think teaching may be a problem here, as when the states of matter are taught it is often not made clear these distinctions only apply clearly to fairly pure samples of substances. In effect the teaching model is that materials occur as solids, liquids and gases – when a good many materials (emulsions, gels, aerosols, etc.) do not fit this model at all well.

Particles in a solid can be seen with a microscope

Keith S. Taber

Image by 2427999 from Pixabay 

Bill was a participant in the Understanding Science Project. Bill was explaining that he had been learning about the states of matter, and introduced the notion of there being particles:

So how do you know if something is a solid, a liquid or a gas?

Well, solids they stay same shape and their particles only move a tiny bit

So what are these particles then?

Erm, they're the bits that make it what it is, I think.

Ah. So are there any solids round here?:

Yeah, this table.

That's a solid, is it?:

Yeah

Technically the terms solid, liquid and gas refer to samples of substances and not objects. From a chemical perspective a table is not solid. However, I continued, accepting Bill's suggestion of a table being solid as a reasonable example.

Okay. So is that made of particles?

Yeah. You can't see them.

No I can't!

'cause they're very, very tiny.

So if I got a magnifying glass?

No.

No?

No.

What about a microscope?

Yeah.

Yeah?

Probably

Possibly?

Yeah, I haven't tried it.

You haven't tried that yet?

No.

But they are very, very tiny are they?

Yeah.

Bill knew that the particles in a solid were very tiny. He seemed to be convinced of their existence, despite not being able to see them. He considered they were too small to be seem with a magnifying glass, but large enough to probably be seen with a microscope.

Bill, like a good scientist, qualified this answer as he had not actually undertaken the necessary observation to confirm this: but his intuition seemed to be that these particles could not be so small that they would not be visible through a microscope.

Later in the interview, Bill used the term microscopic to describe the particles in a solid, where a scientist would describe them as 'submicroscopic' (or 'nanoscopic'):

Tell me the bit about the solids again? Tell me what you said about the particles in the solids?

They move a very tiny amount, but we can't see that … because they are microscopic.

The term 'particle' used in introductory science classes is often used generically to cover atoms, molecules and ion. These entities are usually much too small to be see with an optical light scope (although other instruments such as scanning tunnelling 'microscopes' provide images showing electric potential profiles that can be interpreted as indicating individual atoms).

Students have no real basis on which to understand the scale of atoms and molecules, and often assume they are particles much like the specks and grains that can just be seen. Bill did not make this error, as later in the interview he told me that "the kind of specks of dust, has lots of particles in it, to make up the shape of it".

This becomes important later because much of chemistry supposes that many of the characteristics of substances as observed in the lab. are emergent properties that results from enormous numbers of molecule-scale 'particles' (or 'quanticles') that themselves have quite different behaviour individually.

Learners however may assume that the properties of the bulk materials are due to the particles having those properties – so students may suggest that, for example, that some particles are softer than others or that in a sponge, the particles are spread out more, so it can absorb more water.

Particles are further apart in water than ice

Keith S. Taber

Image from Pixabay 

Bill was a participant in the Understanding Science Project. Bill, a Y7 student, explained what he had learnt about particles in solids, liquids and gases. Bill introduced the idea of particles when talking about what he had learn about the states of matter.

Well there's three groups, solids, liquids and gases.

So how do you know if something is a solid, a liquid or a gas?

Well, solids they stay same shape and their particles only move a tiny bit.

This point was followed up later in the interview.

So, you said that solids contain particles,

Yeah.

They don't move very much?

No.

And you've told me that ice is a solid?

Yeah.

So if I put those two things together, that tells me that ice should contain particles?

Yeah.

Yeah, and you said that liquids contain particles? Did you say they move, what did you say about the particles in liquids?

Er, they're quite, they're further apart, than the ones in erm solids, so they erm, they try and take the shape, they move away, but the volume of the water doesn't change. It just moves.

Bill reports that the particles in liquids are "further apart, than the ones in … solids". This is generally true* when comparing the same substance, but this is something that tends to be exaggerated in the basic teaching model often used in school science. Often figures in basic school texts show much greater spacing between the particles in a liquid than in the solid phase of the same material. This misrepresents the modest difference generally found in practice – as can be appreciated from the observations that volume increases on melting are usually modest.

Although generally the particles in a liquid are considered further apart than in the corresponding solid*, this need not always be so.

Indeed it is not so for water – so ice floats in cold water. The partial disruption of the hydrogen bonds in the solid that occurs on melting allows water molecules to be, on average, closer* in the liquid phase at 0˚C.

As ice float in water, it must have a lower density. If the density of some water is higher than that of the ice from which it was produced on melting then (as the mass will not have changed) the volume must have decreased. As the number of water molecules has not changed, then the smaller volume means the particles are on average taking up less space: that is, they seem to be closer together in the water, not further apart*.

Bill was no doubt aware that ice floats in water, but if Bill appreciated the relationship of mass and volume (i.e., density) and how relative density determines whether floatation occurs, he does not seem to have related this to his account here.

That is, he may have had the necessary elements of knowledge to appreciate that as ice floats, the particles in ice were not closer together than they were in water, but had not coordinated these discrete components to from an integrated conceptual framework.

Perhaps this is not surprising when we consider what the explanation would involve:

Coordinating concepts to understand the implication of ice floating

Not only do a range of ideas have to be coordinated, but these involve directly observable phenomena (floating), and abstract concepts (such as density), and conjectured nonobservable submicroscopic/nanoscopic level entities.

* A difficulty for teachers is that the entities being discussed as 'particles', often molecules, are not like familiar particles that have a definitive volume, and a clear surface. Rather these 'particles' (or quanticles) are fuzzy blobs of fields where the field intensity drops off gradually, and there is no surface as such.

Therefore, these quantiles do not actually have definite volumes, in the way a marble or snooker ball has a clear surface and a definite volume. These fields interact with the fields of other quanticles around them (that is, they form 'bonds' – such as dipole-dipole interactions), so in condensed phases (solids and liquids) there are really not any discrete particles with gaps between them. So, it is questionable whether we should describe the particles being further apart in a liquid, rather than just taking up a little more space.

Particles in ice and water have different characteristics

Making a link between particle identity and change of state

Keith S. Taber

Image by Colin Behrens from Pixabay 

Bill was a participant in the Understanding Science Project. Interviews allow learners to talk about their understanding of science topics, and so to some extent allow the researcher to gauge how well integrated or fragmented a learner's ideas are.

Occasionally there is a sense of 'seeing the cogs turn', where it appears that the interview is not just an opportunity for reporting knowledge, but a genuine site for knowledge construction (on behalf of the students, as well as the researcher) as the learner's ideas seem to change and develop in the interview itself.

One example of this occurred when Bill, a Y7 student, explained what he had learnt about particles in solids, liquids and gases. Bill seemed unsure if the particles in different states of matter were different, or just had different properties. However, when asked about a change of state Bill related heating to changes in the way particles were arranged, and seemed to realise this implied the particles themselves were the same when a substance changes state. Bill seemed to be making a link between particle identity and change of state through the process of answering the researcher's questions.

Bill introduced the idea of particles when talking about what he had learn about the states of matter

Well there's three groups, solids, liquids and gases.

So how do you know if something is a solid, a liquid or a gas?

Well, solids they stay same shape and their particles only move a tiny bit.

This point was followed up later in the interview.

So, you said that solids contain particles,

Yeah.

They don't move very much?

No.

And you've told me that ice is a solid?

Yeah.

So if I put those two things together, that tells me that ice should contain particles?

Yeah.

Yeah, and you said that liquids contain particles? Did you say they move, what did you say about the particles in liquids?

Er, they're quite, they're further apart, than the ones in erm solids, so they erm, they try and take the shape, they move away, but the volume of the water doesn't change. It just moves.

Okay. So the particles in the liquid, they seem to be doing something a bit different to particles in a solid?

Yeah.

What about the particles in the gas?

The gas, they, they're really, they're far apart and they try and expand.

Does that include steam, because you said steam was a gas?

Yeah.

Yeah?

I think.

So, we've got particles in ice?

Yeah.

And they have certain characteristics?

Yeah.

And there are particles in water?

Yeah.

That have different characteristics?

Yeah.

And particles in gas, which have different characteristics again?

Yeah.

Okay. So, are they different particles, then?

N-, I'm not sure.

There are several interesting points here. Bill reports that the particles in liquids are "further apart, than the ones in … solids". This is generally true when comparing the same substance, but not always – so ice floats in water for example. Bill uses anthropomorphic language, reporting that particles try to do things.

Of particular interest here, is that at this point in the interview Bill did not seem to have a clear idea about whether particles kept their identify across changes of state. However, the next interview question seemed to trigger a response which clarified this issue for him:

So have the solid particles, sort of gone away, when we make the liquid, and we've got liquid particles instead?

No {said firmly}, when a solid goes to a liquid, the heat gives the particles energy to spread about, and then when its a liquid, it's got even more energy to spread out into a gas.

So we're talking about the same particles, but behaving differently, in a solid to a liquid to a gas?

Yeah.

That's very clear.

It appears Bill had learnt a model of what happened to the particles when a solid melted, but had not previously appreciated the consequences of this idea for the identity of particles across the different states of matter. Being cued to bring to mind his model of the effect of heating on the particles during melting seemed to make it obvious to him that there were not different particles in the different states (for the same substance), where he had seemed quite uncertain about this a few moments earlier.

Whilst this has to remain something of a speculation, the series of questions used in research interviews can be quite similar in nature to the sequences of questions used in the method of instruction known as Socratic dialogue – a method that Plato reported being used by Socrates to lead someone towards an insight.

So, a 'eureka' moment, perhaps?

K-plus represents a potassium atom that has an extra electron

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching.

Earlier in her interview she had suggested that plus and minus signs represent the charges on neutral atoms when discussing the Na-plus (Na+) and Cl-minus (Cl) symbols, suggesting an alternative conception of electrical charge in relation to atoms, ions and molecules She gave similar interpretations in the case of K-pus (K+) and F-minus (F):

Right, okay, so this one here where it's got a K and a plus, what does that represent?

Potassium…An atom that has an extra electron.

Potassium atom, and it's got one extra electron over a full shell

Yeah.

and that's what the plus means, one more electron than it wants?

Yeah.

And what about the F minus?

Represents fluorine which has one, it has an outer shell of seven which has one less electron.

So, for Annie:

K+ referred to the potassium atom (2.8.8.1), not the cation (2.8.8)

and

F referred to the fluorine atom (2.7), not the fluoride anion (2.8)

Students often present incorrect responses in class (or in interviews with researchers) and sometimes these are simply slips of the tongue or memory, or 'romanced' answer guessed to provide some kind of answer.

When a student repeats the same answer at different times it suggests the response reflects a stable aspect of their underlying 'cognitive structure'. In Annie's case she not only provided repeated answers with the same examples, bit was consistent in the way she interpreted plus and minus symbols across a range of different examples, suggested this was a stable aspect of her thinking.