Responding to a misconception about my own teaching

Keith S. Taber

There are many postings here about things that learners said, and so presumably thought, about curriculum topics that would likely surprise, if not shock, the teachers who had taught them those topics. I am certainly not immune from being misunderstood. Today, I reflect on how someone seems to have understood some of my own teaching, and indeed seriously objected to it.

When I have called-out academic malpractice in this blog the targets have usually been conference organisers or journal administrators using misleading (or downright dishonest) techniques, or publishers mistreating authors. I feel somewhat uneasy about publicly contradicting a junior scholar. However, I also do not appreciate being publicly described as deliberately misleading a student, as has happened here, and my direct challenge to the blog author was rejected.

The accusation

A while back some Faculty colleagues referred me to a blog that included the following comments:

In the Faculty of Education students pursuing the MPhil or PhD take a research ethics lecture that presents the Tuskegee Syphilis Study as ethically sound, but only up to the year 1947 when penicillin was actively being used to treat syphilis. According to the Cambridge lecturer, that's the point when the study became unethical.

When I interrupted his lecture to object to his presentation, I was told by that lecturer that he'd never received any objections in his many, many years of teaching the same slides on the same course. That was not true. He knew and the Faculty knows and yet that false information continues to be disseminated to students, many of whom will go on to complete research in developing countries where their only reference for their ethical or unethical behavior is this lecture.

I am not named, but virtually anyone in my Faculty, or having taken graduate studies there in the last few years, would surely know who was being discussed. As is pointed out in our Educational Research course, and the Research Methods strand of other graduate courses, if you want to avoid someone being identified in your writing, it is not enough to not name them. I can be fairly confident the author of the comments above should have known that: it is a point made in the very lecture being criticised.

This blog posting seems to have received quite a lot of attention among students at the University Faculty where I worked. Yet the two claims here are simply not correct. The teaching is seriously misrepresented, and I certainly did not lie to this student.

The blog invited me to 'Leave a Reply', so I did. My comments were subject to moderation – and the next morning I found a response in my email in-box. My comments would not be posted, and the claims would not be amended: I was welcome to post my reply elsewhere, but not at the site where I was being criticised. So, here goes:

The (rejected) reply

I hope you are well.

I was directed to your blog by a group of scholars in the Faculty (Of Education at Cambridge). It is an impressive blog. However, I was rather surprised by some of what you have posted. I was the lecturer you refer to in your posting who taught the lecture on research ethics. I do indeed remember you interrupting me when I was presenting the Tuskagee syphilis study as an example of unethical research. I always encouraged students to participate in class, and would have welcomed your input at the end of my treatment of that example.

However, having read your comments here, I do need to challenge your account. I do not consider that the Tuskegee syphilis study was initially ethically sound, and I do not (and did not) teach that. I certainly did make the point that even if the study had been ethical until antibiotics were widely available, continuing it beyond that point would have been completely unjustifiable. But that was certainly not the only reason the study was unethical. Perhaps this would have been clearer if you had let me finish my own comments before interjecting – but even so I really do not understand how you could have interpreted the teaching that way.

Scheme (an annotated version of 'the ethical field', Taber, 2013a, Figure 9.1) used to summarise ethical issues in the Tuskegee syphilis study in my Educational Research lecture on ethical considerations of research.

The reference to 1947 in the posting quoted above relates to the 'continue' issue under research quality – the research (which involved medical staff periodically observing, but not treating, diseased {black, poor, mostly illiterate} men who had not been told of the true nature of their condition) was continued even when effective, safe treatment was available and any claims to the information being collected having potential to inform medical practice became completely untenable.

I may well have commented that no one had ever raised any objections to the presentation when I had given the lecture on previous occasions over a number of years – because that is true. No one had previously raised any concerns with me regarding my teaching of this example (or any aspect of the lecture as far as I can recall). I am not sure why you seem to so confidently assume otherwise: regarding this, you are simply wrong.

Usually in that lecture I would present a brief account of the Milgram 'learning' experiment, which would often lead to extended discussion about the ethical problems of that research in relation to its motivation and what was usefully learnt from it. Then, later in the session, I would talk about the Tuskegee study, which normally passed without comment. I had always assumed that was because the study is so obviously and seriously problematic that no one would see any reason to disagree with my critique. Then I would go on to discuss other issues and studies. I can assure you that no one had previously, before you, raised any concerns about my teaching of this example with me. If anyone in earlier cohorts had any concerns about this example they would have been welcome to talk to me about them – either in class, or privately afterwards. No one ever did.

I have no reason to believe that colleagues at Cambridge are deliberately disseminating false information to students, but then I do not audit other teaching officers' lectures, and I cannot speak for them. However, I can speak for myself, just as you rightly speak up for yourself. I have certainly always taken care to do my best not to teach things that are not the case. Of course, as a school and college science teacher I was often teaching models and simplifications, and not the 'whole' truth, but that is the nature of pedagogy, and is something we should make clear to learners (i.e., that they are being taught models and simplifications that can later in their studies be developed through more sophisticated treatments).

In a similar way, I used simplifications and models in my research methods lectures at Cambridge – for example, in terms of the 'shape' of a research project, or contrasting paradigms, or types of qualitative analysis, and so on, but would make explicit to the class that this is what they were: 'teaching models'. I entered the teaching profession to make a positive difference; to help learners develop, and to acquire new understandings and perspectives and skills; not to misinform people. I very much suspect that on occasions I must have got some things wrong, but, if so, such errors would always have been honest mistakes. I have never knowingly taught something that I thought was untrue.

So, whilst I admire your courage in standing up for what you believe, and I certainly wish you well, what you have written is not correct, and I trust my response will be posted so that your inaccurate remarks will not go unchallenged. I suspect that you are not being deliberately untruthful (you accuse me of telling you something I knew was not true: I try to be charitable and give people the benefit of doubt, so I would like to think that you were writing your comments in good faith), but I do not understand how you managed to come to the interpretation of my teaching that you did, and wish that you would have at least heard me out before interrupting the class, as that may have clarified my position for you. The Tuskegee syphilis study was a racist, unethical study that misled and abused some of those people with the lowest levels of economic and political power in society: people (not just the men subjected to the study, but also their families) who were betrayed by those employed by the public health service that they trusted (and should have been able to trust) to look after their interests. I do not see how anyone could consider it an ethically sound study, and I struggle to see why you would think anyone could.

Your claim that I lied about not having previously received complaints about my teaching of this topic before is simply untrue – it is a falsehood that I hope you will be prepared to correct.

What should a 'constructivist' teacher make of this?

I should be careful about criticising a student for thinking I was teaching something quite different from what I thought I was teaching. I have spent much of my career telling other teachers that learners will make sense of our teaching in terms of the interpretive resources they have available, and so they may interpret our teaching in unexpected ways. Learners will always be biased to understand in terms of their expectations and past experiences. We see it all the time in science teaching, as many of the posts here demonstrate.

I have described learning as being an incremental, interpretive, and so iterative, process and not a simple transfer of understanding (Taber, 2014). Teaching (indeed communication) is always a representation of thinking in a publicly accessible form (speech, gesture, text, diagrams {what sense does the figure above make out of the context of the lecture?}, models, etc.) – and whatever meaning may have informed the production of the representation, the representation itself does not have or contain meaning: the person accessing that presentation has to impose their own interpretation to form a meaning (Taber, 2013b). After teaching and writing about these ideas, I would be a hypocrite to claim that a learner could not misinterpret my own teaching as I can communicate perfectly to a room full of students from all around the world with different life experiences and varied disciplinary backgrounds!

Even so, I am still struggling to understand the interpretation put on my teaching in this case, despite going back to revisit the teaching materials a number of times. Most of the points I was making must have been completed disregarded to think I did not consider the study, which ran from 1932 to 1972 (Jones, 1993) unethical until 1947. So, even for someone who claims to be a constructivist teacher and knows there is always a risk of learners misconceiving teaching, this example seems an extreme case.

The confident claim that it was not true that I had not received previous complaints about my teaching of this example is even harder to understand. It is at least a good reminder for me not to assume I know what students are thinking or that they know what I am thinking, or can readily access the intended meaning in my teaching. I've made those points to others enough times, so I will try to see this incident as a useful reminder to follow my own advice.

Sources cited:

In a molecule, the electron actually slots into spaces

Keith S. Taber

Mohammed was a participant in the Understanding Science Project. When interviewed in the first term of his upper secondary (GCSE) science course (in Y10), he told me he had been learning about ionic bonding in one of his science classes. Mohammed had quite a clear idea about ionic bonding, which he described in terms of the interactions of two atoms where "they both want to get full outer shells", leading to salt which was "like two atoms joined together":

The "two atoms joined together" sounds much like a molecule (and it is very common for students to identify molecule like ion-pairs even in representations of extensive ionic lattices), so I asked Mohammed about this:

Can I see these atoms?

No. They're really small. Because the wavelength of visible light is actually too like large to see the atoms, they just pass over them.

Okay, so I can't see them. But I can imagine them, can I?

Yeah.

So if I could imagine a sodium atom and chlorine atom, and then they form salt, what would it look like afterwards? How could I imagine it afterwards.

Oh it's like two atoms joined together.

That sounds like a molecule to me?

It's not actually, like, joined.

No?

Because I know that whenever things of opposite charge, I know two rods, when they come together, they don't actually touch, so they don't exactly touch, but they are very close, two atoms close to each other

So a molecule would be different to that in some way, would it?

Yeah, a molecule's actually bonded

So how that different?

I think in a molecule, the electron actually slots into spaces.

I see, and it doesn't do that in this case?

No.

So Mohammed thinks that the interaction between the ions will be due to their electrical charges, but, for him, this may not count as a bond, as the forces just hold the ions ("atoms") close together, and do not actually join them. Mohammed's idea of the atoms not actually touching, "they don't actually touch, so they don't exactly touch", is transferring a notion from the familiar world of macroscopic phenomena (where things touch, or they do not touch) to the submicroscopic world of quanticles that do not have definitive size/volume, and do not actually have distinct surfaces, so touching is a matter of degree. There is no more (or less) 'touching' in a covalent bond than in ionic bonding. So according to Mohammed the ions do not form a molecule, as in a molecule there would some kind of more direct joining – he suggests something like an interlocking with electrons from one atom slotting into spaces on another.

Interestingly, Mohammed bases his notion that the ions would not touch on a general principle that he considers to apply whenever considering things of opposite charge – which he justifies on his knowledge that "two [charged] rods, when they come together, they don't actually touch". He may be misremembering something here – or he may have seen a demonstration of suspended charged rods of the same material (so either both negatively or both positively changed) that when one is moved closer to the other the rods repel. Whatever the source, Mohammed seems to feel he has a valid general principle that he can apply here that act as a grounded learning impediment channelling his thinking about the case under discussion along 'the wrong lines'.

Mohammed's notion of the ionic bonding as being just due to forces rather than being a proper bond is very similar to a common alternative conceptions of ionic bonding which sees ions in a lattice only having a limited number of ionic bonds depending upon valency (the valency conjecture) but bonded with other coordination counter-ions by 'just forces' (the just forces conjecture) – although here Mohammed suspected that all ionic bonding fell short of being proper chemical bonds.

This is a very mechanical model of the covalent bond, whereas the scientific model presents bonding as more of a process than a material mechanical link. However teaching models often present bonding this way, and sometimes molecules are modelled in terms of jigsaws with atoms or radicals as pieces to be slotted together. Although such models are only meant to provide a simple analogy for the bonding they may act as learning impediments if learners take them too 'literally' as realistic representations and transfer inappropriate associations from the model to their understanding of the system being modelled.

Mohammed also uses similar language when asked about salt dissolving in water, as the charge of the water forces the sodium and chlorine ions to slot into certain places within the water molecules *.

Electrons would contain some of the element

Electrons from different elements would be different – perhaps because they would actually contain some of the element in the electron?

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12). She was shown a representation of a tetrachlomethane molecule.

Understanding Chemical Bonding project – Focal figure 3

When Annie was asked about the diagram, she noted that (following a representational convention) the electrons were represented differently. Using different symbols like this is quite common, but is little more that a bookmaking tool – to help keep count of the number of electrons in the molecule in relation to those that would be present in discrete atoms.

…are there any bonds [shown] in that diagram do you think?

Yes.

How many?

Four.

Four bonds, so we've got four bonds there. Erm, are the bonds actually shown?

Yeah.

So how are they represented on the diagram?

By the circles that overlap, and they're showing it by the electrons, the outer-shell electrons in the chlorine have got black dots and the ones from carbon have got just circles.

Okay. So the carbon electrons and the chlorine electrons are signified in a different way

Yeah.

I followed up this point to check Annie understood that the convention did not imply that there was any inherent difference between the electrons.

So what would be the difference between a carbon electron and a chlorine electron?

(pause, c.5s)

The expected answer here was 'no difference', but the pause suggested Annie was not clear about this. So I set up an imaginary scenario, a kind of thought experiment:

If I gave you a bottle of electrons – which I can't do – how would you be able to tell chlorine electrons from carbon electrons – in what ways would they be different?

They would be different because, erm, I don't know if they would actually contain some of the element in the electron.

Do you think they might have little labels on some with "C"s and some with "Cl"s or

Yeah, I don't know if you got an electron, and you could sort of if you took one single one you could say, right that's chlorine and that one's carbon.

You are not sure, you are not sure if you could, or not?

No.

The idea that an electron might contain some of the element seems to miss the key idea that macroscopic phenomena (samples of element) are considerer to energy from extensive ensembles of submicroscopic particles ('quanticles').

Annie did not seem too sure here – perhaps her intuition was that a carbon electron would be different to a chlorine electron, but she could not suggest how. Electrons have no memories, and there is no way of knowing whether an electron has previously been part of a particular atom (or ion or molecule). A free electron is not meaningfully a chlorine electron or a carbon electron. However, students do not always appreciate this, and may consider that free electrons in some sense belong to an atoms they they derived form, and even that this may later have consequences (as with the 'history' conjecture in thinking about ionic bonding).

Annie went on to suggest that carbon electrons would be bigger than chlorine electrons.