Disease and immunity – a biological myth

Does the medieval notion of the human body as a microcosm of the wider Cosmos – in which is played out an eternal battle between good and evil – still influence our thinking?


Keith S. Taber wants to tell you a story


Are you sitting comfortably?

Good, then I will begin.

Once upon a time there was an evil microbe. The evil microbe wanted to harm a human being called Catherine, and found ways for his vast army of troops to enter Catherine's body and damage her tissues.
Luckily, unbeknown to the evil microbe, Catherine was prepared to deal with invaders – she had a well-organised defence force staffed by a variety of large battalions, including some units of specialist troops equipped with the latest anti-microbe weapons.
There were many skirmishes, and then a series of fierce battles in various strategic locations – and some of these battles raged for days and days, with heavy losses on both sides. No prisoners were taken alive. Many of Catherine's troops died, but knowing they had sacrificed themselves for the higher cause of her well-being.
But, in the end, all of the evil microbe's remaining troops were repelled and the war was won by the plucky defenders. There was much rejoicing among the victorious army. The defence ministry made good records of the campaign to be referred to in case of any future invasions, and the surviving soldiers would long tell their stories of ferocious battles and the bravery of their fallen comrades in defeating the wicked intruders.
Catherine recovered her health, and lived happily ever after.

There is a myth, indeed, perhaps even a fairy story, that is commonly told about microbial disease and immunity. Disease micro-organisms are 'invaders' and immune cells are 'defenders' and they engage in something akin to warfare. This is figurative language, but has become so commonly used in science discourse that we might be excused for forgetting this is just a stylistic feature of science communication – and so slip into habitually thinking in the terms that disease actually is a war between invading microbes and the patient's immune system.


Immunity is often presented through a narrative based around a fight between opposed sentient agents. (Images by Clker-Free-Vector-Images and OpenClipart-Vectors from Pixabay.)


Actually this is an analogy: the immune response to infection is in some ways analogous to a war (but as with any analogy, only in some ways, not others). As long as we keep in mind this is an analogy, then it can be a useful trope for talking and thinking about infectious disease. But, if we lose sight of this and treat such descriptions as scientific accounts, then there is a danger: the myth undermines core biological principles, such that the analogy only works if we treat biological entities in ways that are contrary to a basic commitment of modern science.

In this article I am going to discuss a particular, extensive, use of the disease-as-war myth in a popular science book (Carver, 2017), and consider both the value, and risks, of adopting such a biological fairy-tale.

Your immune system comprises a vast army of brave and selfless soldiers seeking to protect you from intruders looking to do you harm: an immune response is a microcosm of the universal fight between good and evil?

A myth is a story that has broad cultural currency and offers meaning to a social group, usually involving supernatural entities (demons, superhuman heroes, figures with powerful magic), but which is not literally true.

Carver's account of the immune system

I recently read 'Immune: How your body defends and protects you' (henceforth, 'Immune') by Catherine Carver. Now this is clearly a book that falls in the genre 'popular science'. That is, it has been written for a general audience, and is not meant as a book for experts, or a textbook to support formal study. The publishers, Bloomsbury, appropriately describe Carver as a 'seasoned science communicator'. (Appropriately, as metaphorical dining features strongly in the book as well.)

Carver uses a lot of contractions ("aren't", "couldn't", "doesn't", "don't", "isn't", "it's", "there's", "they're", "we've", "what's", "who'd", "wouldn't", "you'd") to make her writing seem informal, and she seems to make a special effort to use metaphor and simile and to offer readers vivid scenes they can visualise. She offers memorable, and often humorous, images to readers. A few examples offer an impression of this:

  • "…the skin cells…migrate through the four layers of the epidermis, changing their appearance like tiny chameleons…"
  • "Parietal cells dotted around the surface of the stomach are equipped with proton pumps, which are like tiny merry-go-rounds for ions."
  • "a process called 'opsonisation' make consuming the bacterial more appealing to neutrophils, much like sprinkling tiny chocolate chips on a bacterial cookie."
  • "The Kupffer cells hang around like spiders on the walls of the blood vessels…"

In places I wondered if sometimes Carver pushed this too far, and the figurative comparisons might start to obscure the underlying core text…

"…the neutrophil…defines cool. It's the James Dean of the immune system; it lives fast, dies young and looks good in sunglasses."

Carver, 2017, p.7

"The magnificence of the placenta is that it's like the most efficient fast-food joint in the world combined with a communications platform that makes social media seem like a blind carrier pigeon, and a security system so sophisticated that James Bond would sell his own granny to the Russians just to get to play with it for five minutes."

Carver, 2017, p.113

When meeting phrases such as these I found myself thinking about the metaphors rather than what they represented. My over-literal (okay, pedantic) mind was struggling somewhat to make sense of a neutrophil in (albeit, metaphoric) sunglasses, and I was not really sure that James Bond would ever sell out to the Russians (treachery being one of the few major character faults he does not seem to be afflicted by) or be too bothered about playing with a security system (his key drives seem focused elsewhere)…

…but then this is a book about a very complex subject being presented for an audience that could not be assumed to have anything beyond the most general vague prior knowledge of the immune system. As any teacher knows, the learner's prior knowledge is critical in their making sense of teaching, and so offering a technically correct account in formal language would be pointless if the learner (or, here, reader) is not equipped to engage at that level.

'Immune' is a fascinating and entertaining read, and covers so much detailed ground that I suspect many people reading this book would would not have stuck with something drier that avoided a heavy use of figurative language. Even though I am (as a former school science teacher *) probably not in the core intended audience for the book, I still found it very informative – with much I had not come across before. Carver is a natural sciences graduate from Cambridge, and a medical doctor, so she is well placed to write about this topic.


Catherine Carver's account of the immune system is written to engage a popular readership and draws heavily on the disease-as-war analogy.


My intention here is not to offer a detailed review or critique of the book, but to explore its use of metaphors, and especially the common disease-as-war theme (Carver draws on this extensively as a main organising theme for the book, so it offers an excellent exemplar of this trope) – and discuss the role of the figurative language in science communication, and its potential for subtly misleading readers about some basic scientific notions.

The analogy

The central analogy of 'Immune' is clear in an early passage, where Carver tells us about the neutrophil,

"…this cell can capture bubonic plague in a web of its own DNA, spew out enzymes to digest anthrax and die in a kamikaze blaze of microbe-massacring glory. The neutrophil is a key soldier in an eternal war between our bodies and the legions of bacteria, viruses, fungi and parasites that surround us. From having sex to cleaning the kitchen sink, everything we do exposes us to millions of potential invaders. Yet we are safe. Most of the time these invaders' attempts are thwarted. This is because the human body is like an exceedingly well-fortified castle, defended by billions of soldiers. Some live for less than a day, others remember battles for years, but all are essential for protecting us. This is the hidden army that we all have inside of us…"

Carver, 2017, p.7

Phew – there is already a lot going on there. In terms of the war analogy:

  • We are in a perpetual war with (certain types) of microbes and other organisms
  • The enemy is legion (i.e., has vast armies)
  • These enemies will invade us
  • The body is like a well-protected fort
  • We have a vast army to defend us
  • There will be battles between forces from the two sides
  • Some of our soldiers carry out suicide (kamikaze) missions
  • Our defenders will massacre microbes
  • We (usually) win the battles – our defences keep us safe

Some of these specific examples can be considered as metaphors or similes in they own right when they stand alone, but collectively they fit under an all-encompassing analogy of disease-as-war.

Read about analogies in science

Read about metaphors in science

Read about similes in science

But this is just an opening salvo, so to speak. Reading on, one finds many more references to the 'war' (see Boxes 1 and 2 below).

The 'combatants' and their features are described in such terms as army, arsenals, assassins, band of rebels, booby-traps, border guards, border patrol force, commanders, defenders, fighting force, grand high inquisitors, hardened survivor, invaders, lines of defence, muscled henchman, ninjas, soldiers, terminators, trigger-happy, warriors, and weapons.

Disease and immune processes and related events are described in terms such as alliance, armoury, assassination campaign, assault, assault courses, attack, battlefield, bashing, battles, boot camp, border control, calling up soldiers, chemical warfare, cloaking device, craft bespoke weaponry, decimated, dirty bomb, disables docking stations, double-pronged attack, exploding, expose to a severe threat, fight back, fighting on fronts, friendly fire, go on the rampage, hand grenades, heat-seeking missiles, hold the fort, hostile welcome, instant assault , kamikaze, killer payload, massacring, patrolling forces, pulling a pin on a grenade, R & R [military slang for 'rest and recuperation'], reinforcing, security fence, self-destruct, shore up defences, slaughters/slaughtering, smoke signals, standing down, suicidal missions, Swiss army knife, taking on a vast army on its home turf, throwing dynamite, time bomb, toxic cloud, training camp, training ground, trip the self-destruct switch, Trojan horse, victories, war, and wipe out the invader.

Microbes and cells as agents

A feature of the analogue is that war is something undertaken by armies of soldiers, that are considered as having some level of agency. The solder is issued with orders, but carries them out by autonomous decision-making informed by training as well as by conscience (a soldier should refuse to obey an illegal order, such as to deliberately kill civilians or enemy combatants who have surrendered). Soldiers know why they are fighting, and usually buy into at least the immediate objectives of the current engagement (objectives which generally offer a more favourable outcome for them than for the enemy soldiers). A soldier, then, has objectives to be achieved working towards a shared overall aim; purposes that (are considered to) justify the actions taken; and indeed takes deliberate actions intended to bring out preferred outcomes. Sometimes soldiers may make choices they know increase risks to themselves if they consider this is justified for the higher 'good'. These are moral judgements and actions in the sense of being informed by ethical values.


An extensive range of terminology related to conflict is used to describe aspects of disease and the immune response to infection. (Image sources: iXimus [virus], OpenClipart-Vectors [cell], Tumisu [solders in 'Raising the Flag on Iwo Jima'-like poses], from Pixabay.)


Now, I would argue that none of this applies to either disease organisms nor components of a human immune system. Neither a bacterium nor an immune cell know they are in a war; neither have personal, individual or shared, objectives; and neither make deliberate choices about actions to take in the hope they will lead to particular outcomes. No cell knowingly puts itself at risk because it feels a sacrifice is justified for the benefit of its 'comrades' or the organism it is part of.

So, all of this might be considered part of what is called the 'negative analogy', that is, where the analogy breaks down because the target system (disease processes and immune responses) no longer maps onto the analogue (a war). Perhaps this should be very obvious to anyone reading about the immune system? At least, perhaps scientists might assume this would be very obvious to anyone reading about the immune system?

Now, if we are considering the comparison that an immune response is something like a nation's defence forces defending its borders against invaders, we could simply note that this is just a comparison but one where the armies of each side are like complex robotic automatons pre-programmed to carry out certain actions when detecting certain indicators: rather than being like actual soldiers who can think for themselves, and have strategic goals, and can rationally choose actions intended to bring about desired outcomes and avoid undesired ones. (A recent television advertising campaign video looking to recruit for the British Army made an explicit claim that the modern, high-tech, Army could not make do with robots, and needed real autonomous people on the battlefield.)

However, an account that relies too heavily on the analogy might be in danger of adopting language which is highly suggestive that these armies of microbes and immune cells are indeed like human soldiers. I think Carver's book offers a good deal of such language. Some of this language has already been cited.

Immune cells do not commit kamikaze

Consider a neutrophil that might die in a kamikaze blaze of microbe-massacring glory. Kamikaze refers to the actions of Japanese pilots who flew their planes into enemy warships because they believed that, although they would surely die and their planes be lost, this could ensure severe damage to a more valuable enemy resource – where the loss of their own lives was justified by allowing them to remain at the plane's controls until the collision to seek to do maximum damage. Whatever we think of war in general, or the Kamikazi tactics in particular, the use of this term alludes to complex, deliberate, human behaviour.

Immune cells do not carry out massacres

And the use of the term massacre is also loaded. It does not simply mean to kill, or even to kill extensively. For example, the Jallianwala Bagh massacre, or Amritsar massacre, is called a massacre because (British) soldiers with guns deliberately fired at, with intent to kill or seriously injure, a crowd of unarmed Indians who were in their own country, peacefully protesting about British imperial policies. The British commanders acted to ensure the protesters could not easily escape the location before ordering soldiers to fire, and shooting continued despite the crowd trying to flee and escape the gunfire. Less people died in the Peterloo Massacre (1819) but it is historically noteworthy because it represented British troops deliberately attacking British demonstrators seeking political reform, not in some far away 'corner of Empire', but in Manchester.

Amritsar occurred a little over a century ago (before modern, post-Nurenmberg, notions of the legality of military action and the responsibility of soldiers to not always follow orders blindly), but there are plenty of more recent examples where the term 'massacre' is used, such as the violent clearing of protesters in Tiananmen Square in 1989 and the Bogside 'Bloody Sunday' massacre in 1972 (referenced in the title of the U2 song, 'Sunday Bloody Sunday'). In these examples there is seen to be an unnecessary and excessive use of force against people who are not equipped to fight back, and who are not shown mercy when they wish to avoid or leave the confrontation.


'Monument in Memory of Chinese from Tiananmen in Wrocław, Poland' commemorating the massacre of 4th June 1989 when (at least) hundreds were killed in Beijing after sections of the People's Liberation Army were ordered to clear protesters from public places (Masur, Public domain, via Wikimedia Commons)


The term massacre loses its meaning without this sense of being an excessively immoral act – and surely can only apply to an action carried out by 'moral agents' – agents who deliberately act when they should be aware the action cannot be morally justified, and where they can reasonably see the likely outcomes. (Of course, it is more complicated that this, in particular as a soldier has orders as well as a conscience – but that only makes the automatic responses of immune cells towards pathogens even less deserving of being called a massacre.)

The term moral agent does not mean someone who necessarily behaves morally, but rather someone who is able to behave morally (or immorally) because they can make informed judgements about what is right and wrong – they can consider the likely consequence of their actions in terms of a system of values. An occupied building that collapses does harm to people, but cannot be held morally responsible for its 'behaviour' in the way a concentration camp guard or a sniper can be. A fox that takes a farmer's chickens has no conception of farming, or livestock, or ownership, or of the chickens as sentient beings that will experience the episode from a different perspective, but just acts instinctively to access food. Microbes and cells are like the building or the fox, not the guard or the sniper, in this respect.

Moreover, in the analogue, the massacred are also moral agents: human beings, with families, and aspirations for their futures, and the potential for making unique contributions to society… I am not convinced that bacteria or microbes are the kinds of entities that can be massacred.

Anthropomorphic references

Carver then writes about the immune system, or its various components, as well as various microbes and other pathogenic organisms, as though they are sentient, deliberative agents acting in the world with purposes. After all, wars are a purely human phenomenon.1 Wars involve people: people with human desires, motives, feelings, emotions, cunning, bravery (or not), aims and motivations.

Anthropomorphism is describing non-human entities as if they are people. Anthropomorphism is a common trope in science teaching (and science communication) but learners may come to adopt anthropomorphic explanations (e.g., the atom wants…) as if they are scientific accounts (Taber & Watts, 1996).

Read about anthropomorphism

Bacteria, body cells and the like are not these kinds of entities, but can be described figuratively as though they are. Consider how,

"Some bacteria are wise to this and use iron depletion as an indicator that they are inside an animal. Other bacteria have developed their own powerful iron-binding molecules called 'siderophores' which are designed to snatch the iron from the jaws of lactoferrin. Perhaps an even smarter strategy is just to opt out of the iron wars altogether…

…tear lipocalin, whose neat structure includes a pocket for binding a multitude of molecules. This clever pocket allows tear lipocalin to bind the bacterial siderophores…neutralising the bacterium's ability to steal iron from us…"

Carver, 2017, pp.20-21

Of course, bacteria are only 'wise' metaphorically, and they only 'develop' and 'design' molecules metaphorically, and they only adopt 'smarter strategies' or can 'opt out' of activities metaphorically – and as long as the reader appreciates this is all figurative language it is unproblematic. But, when faced with multiple, and sometimes extended, passages seeming to imply wise and clever bacteria developing tools and strategies, could the reader lose sight of this (and, if so, does that matter?)

If bacteria are not really clever, nor are pockets (or 'pockets' – surely this is a metaphor, as actual pockets are designed features not evolved ones). Stealing is the deliberate taking of something one knows is owned by someone else. Bacteria may acquire iron from us, but (like the fox) they do not steal as they have no notion of ownership and property rights, nor indeed, I suggest, any awareness that those environments from which they acquire the iron are considered by them[our]selves as 'us'.

That is, there is an asymmetrical relationship here: humans may be aware of the bacteria we interact with (although this has been so only very recently in historical terms) but it would be stretching credibility to think the bacteria have any awareness – even assuming they have ANY awareness in the way we usually use the term – of us as discrete organisms. So, the sense in which they "use iron depletion as an indicator that they are inside an animal" cannot encompass a deliberate use of an indicator, nor any inference they are inside an animal. There is simply a purely automatic, evolved, process that responds to environmental cues.

I have referred in other articles posted here to examples of such anthropromorphic language in public discourse being presented apparently in the form of explanations: e.g.,

"Y-negative cells cause an immune evasive environment in the tumour, and that, if you will, paralyses, the T cells, and exhausts them, makes them tired"

"first responder cells. In humans they would be macrophages, and neutrophils and monocytes among them. These cells usually rush to the site of an injury, or an infection, and they try to kill the pathogen"

"viruses might actually try to…hide…the microbes did not just accept defeat"

"we are entering Autumn and Winter, something that COVID and other viruses, you know, usually like…when it gets darker, it gets colder, the virus likes that, the flu virus likes that"

My focus here is Catherine Carver's book, but it is worth bearing in mind that even respectable scientific journals sometimes publish work describing viruses in such terms as 'smart', 'nasty', 'sneaky' – and, especially it seems, 'clever' (see 'So who's not a clever little virus then?'). So, Carver is by no means an outlier or maverick in using these devices.

'Immune' is embellished throughout with this kind of language – language that suggests that parasites, microbes, body cells, or sometimes even molecules:

  • act as agents that are aware of their roles and/or purposes;
  • do things deliberately to meet objectives;
  • have preferences and tastes.

The problem is, that although this is all metaphorical, as humans we readily interpret information in terms of our own experiences, so a scientific reading of a figurative text may requires us to consciously interrogate the metaphors and re-interpret the language. Historians of chemistry will be well aware of the challenge from trying to make sense of alchemical texts which were often deliberately obscured by describing substances and processes in metaphoric language (such as when the green lion covers the Sun). Science communicators who adopt extensive metaphors would do well to keep in mind that they can obscure as well as clarify.

For example, Carver writes:

"…the key to a game of hide and seek is elementary: pick the best hiding place. In the human body, the best places to hide are those where the seekers (the immune system) find it hard to travel. This makes the brain a very smart place for a parasite to hide."

Carver, 2017, p.132

'There is a strong narrative here ("the eternal game of hide and seek [parasites] play with us")- most of us are familiar with the childhood game of hide and seek, and we can readily imagine microbes or parasites hiding out from the immune cells seeking them. This makes sense, because of course, natural selection has led to an immune system that has components which are distributed through the body in such a way that they are likely to encounter any disease vectors present – as this increases fitness for the creature with such a system – and natural selection has also led to the selection of such vectors that tend to lodge in places less accessible to the immune cells – as this increase fitness of the organism that we2 consider a disease organism. Thus evolution has often been described, metaphorically, as an arms race.

But this is not really a game (which implies deliberate play – parasites can not know they are playing a game); and the disease vectors do not have any conception of hiding places, and so do not pick where to go accordingly, or using any other criterion; the immune cells are not knowingly seeking anything, and do not experience it being harder to get to some places than others (they are just less likely to end up in some places for purely naturalistic reasons).

So, a parasite that ends up in the brain certainly may be less accessible to the immune system, but is not deliberately hiding there – and so is no more 'smart' to end up there than boulders that congregate at the bottom of a mountainside because they think it is a good place to avoid being sent rolling by gravity (and perhaps having decided it would be too difficult to ascend to the top of the mountain).4

It is not difficult to de-construct a text in the way I have done above for the hide-and-seek comparison- if a reader thinks this is useful, and consequently continually pauses to do so. Yet, one of the strengths of a narrative is that it drives the reader forward through a compelling account, drawing on familiar schemata (e.g., hide and seek; dining; setting up home…) that the reader readily brings to mind to scaffold meaning-making.

Another familiar (to humans) schema is choosing from available options:

"…the neutrophil's killer skills come to the fore…It only has to ask one question: which super skills should be deployed for the problem at hand?"

Carver, 2017, p.27

So, it seems this type of immune cell has 'skills', and can pose itself (and answer) the question of which skills will be most useful in particular circumstances (perhaps just like a commando trained to deal with unexpected scenarios that may arise on a mission into enemy-held territory?) Again, of course, this is all figurative, but I wonder just how aware most readers are of this as they read.

Carver's account of Kupffer cells makes them seem sentient,

"The Kupffer cells hang around like spiders on the walls of the blood vessels waiting to catch any red blood cells which have passed their best before date (typically 120 days). Once caught, the red blood cell is consumed whole by the Klupffer cell, which sets about dismantling the haemoglobin inside its tasty morsel."

Carver, 2017, p.27

Kupffer cells surely do not 'hang around' or 'wait' in anything more than a metaphorical sense. If 'catching' old red blood cells is a harmless metaphor, describing them as tasty morsels suggests something about the Kupffer cells (they have appetites that discriminate tastes – more on that theme below) that makes them much more like people than cells.

Another striking passage suggests,

"Some signals are proactive, for example when cells periscope from their surface a receptor called ULBP (UL16-binding protein). Any NK cell that finds itself shaking hands with a ULBP receptor knows it has found a stressed-out cell. The same is true if the NK cell extends its receptors to the cell only to find it omits parts of the secret-handshake expected from a normal cell. Normal, healthy cells display a range of receptors on their surface which tell the world 'I'm one of us, everything is good'. Touching these receptors placates NK cells, inhibiting their killer ways. Stressed, infected cells display fewer of these normal receptors on their surface and in the absence of their calming presence the trigger-happy NK cells attack."

Carver, 2017, p.27

That cells can 'attack' pathogens is surely now a dead metaphor and part of the accepted lexicon of the topic. But cells are clearly only figuratively telling the world everything is good – as 'telling' surely refers to a deliberate act. The hand-shaking, including the Masonic secret variety (n.b., a secret implies an epistemic agent capable of of knowing the secret), is clearly meant metaphorically – the cell does not 'know' what the handshake means, at least in the way we know things.

If the notion of a cell being stressed is also a dead metaphor (that is 'stressed' is effectively a technical term here {"the concept of stress has profitably been been exported from physics to psychology and sociology" Bunge, 2017/1998}), a stressed-out cell seems more human – perhaps so much so that we might be subtly persuaded that the cell can actually be placated and calmed? The point is not that some figurative language is used: rather, the onslaught (oops, it is contagious) of figurative language gives the reader little time to reflect on how to understand the constant barrage of metaphors…

"…it takes a bit of time for the B cells to craft a specific antibody in large quantities. However the newly minted anti-pollen antibodies are causing mischief even if we can't see evidence of it yet. They travel round the body and latch on to immune cells called masts anywhere they can find them. This process means the person is now 'sensitised' to the pollen and the primed mast cells lie in wait throughout the body…"

Carver, 2017, pp.183-184

…so, collectively the language can be insidious – cells can 'craft' antibodies (in effect, complex molecules) which can cause mischief, and find mast cells which lie in wait for their prey.

Sometimes the metaphors seemed to stretch even figurative meaning. A dying cell will apparently 'set its affairs in order'. In humans terms, this usually relates to someone ensuring financial papers are up to date and sorted so that the executors will be able to readily manage the estate: but I was not entirely sure what this metaphor was intended to imply in the case of a cell.

Animistic language

Even a simple statement such as "First the neutrophil flattens itself"(p.28) whilst not implying a conscious process makes the neutrophil the active agent rather than a complex entity subject to internal mechanisms beyond its deliberate control. 3

So, why write

"Finally, the cell contracts itself tightly before exploding like a party popper that releases deadly NETs [neutrophil extracellular traps] instead of streamers."

Carver, 2017, p.27

rather than just "…the cell contracts tightly…"? I suspect because this offers a strong narrative (one of active moral agents engaged in an existential face-off) that is more compelling for readers.

Neutrophils are said to 'gush' and to 'race', but sometimes to be slowed down to a 'roll' when they can be brought to a stop ("stopping them in their tracks" if rolling beings have tracks?). But on other occasions they 'crawl'. Surely crawling is a rather specific means of locomotion normally associated with particular anatomy. Typically, babies crawl (but so might soldiers when under fire in a combat zone?)

There are many other examples of phrases that can be read as anthropomorphic, or at least animistic, and the overall effect is surely insidious on the naive reader. I do not mean 'naive' here to be condescending: I refer to any reader who is not so informed about the subject matter sufficiently to already understand disease and immunity as natural processes, that occur purely through physical and chemical causes and effects, and that have through evolution become part of the patterns of activity in organisms embedded in their ecological surroundings. A process such as infection or an immune response may look clever, and strategic, and carefully planned, but even when very complex, is automatic and takes place without any forethought, intentions, emotional charge or conscious awareness on the part of the microbes and body cells involved.

There are plenty of other examples in 'Immune' of phrasing that I think can easily be read as referring to agents that have some awareness of their roles/aims/preferences, and act accordingly. And by 'can easily be read', I suspect for many lay readers (i.e., the target readership) this means this will be their 'natural' (default) way of interpreting the text.

So (see Box 3 , below), microbes, cells, molecules and parasites variously are in relationships, boast, can beckon and be beckoned, can be crafty, can be egalitarian, can be guilty, can be ready to do things, can be spurred on, can be told things, can be treacherous, can be unaware (which implies, sometimes they are aware), can dance choreographed, can deserve blame, can find things appealing, can have plans, can mind their own business, can pay attention, can spot things, can take an interest, can wheedle (persuade), congregate, craft things, dare to do things, do things unwittingly, find things, get encouraged, go on quests, gush, have aims, have friends, have goals, have jobs, have roles, have skills, have strategies, have talents, have techniques, insinuate themselves, know things, like things, look at things, look out for things, play, outwit, race, seek things, smuggle things, toy with us, and try to do things.

Microbes moving in

One specific recurring anthropomorphic feature of Carver's descriptions of the various pathogens and the harmless microbes which are found on and in us, is related to finding somewhere to live – to setting up a home. Again, this is clearly metaphorical, a microbe may end up being located somewhere in the body, but has no notion, or feeling, of being at home. Yet the schema of home – finding a home, setting up home, being at home, feeling at home – is both familiar and, likely, emotionally charged, and so supports a narrative that fits with our life-experiences.


A squatter among pathogen society? Images by Peter H (photograph) and Clker-Free-Vector-Images (superimposed virus) from Pixabay


Viruses and bacteria are compared in terms of their travel habits (in relation to which, "The human hookworm…[has] got quite an unpleasant commute to work…"),

"…viruses are the squatters of pathogen society. Unlike bacteria, which tend to carry their own internal baggage for all their disease-making needs, viruses pack light. They hold only the genes they need to gain illegal entry to our cells and then instruct our cells' machinery to achieve the virus's aims. The cell provides a very happy home for the virus, and also gives it cover from the immune system."

Carver, 2017, p.35

These pathogens apparently form a society (where there is a distinction between what is and what is not legal 5) and individually have needs and aims. A virus not only lives in a home, but can be happy there. Again, such language does have a sensible meaning (if we stop to reflect on just what the metaphors can sensibly mean), but it is a metaphorical meaning and so should not be taken literally.

The analogy is however developed,

"…the human microbiota is the collective name for the 100 trillion micro-organisms that have made us their real estate. From the tip of your tongue to the skin you sit on, they have set up home in every intimate nook and cranny of our body…The prime real estate for these microbes, the Manhattan or Mayfair equivalent inside you and me, is the large intestine or colon. If you had a Lonely Planet or Rough Guide to your gut, the colon would have an entry something like this: 'The colon is a must-see multi-cultural melting-pot, where up to one thousand species of bacteria mingle and dine together every second of every day. In this truly 24/7 subterranean city, Enterococci rub shoulders with Clostridia; Bacteroides luxuriate in their oxygen-depleted surroundings and Bifidobacteria banquet on a sumptuous all-you-can-eat poo buffet. It's the microbe's place to see, and be seen'. ….[antibiotic's] potential to kill off vast swathes of the normal gut flora. This creates an open-plan living space for a hardy bacterium called Clostridium difficile. This so-called superbug (also known as C. diff) is able to survive the initial antibiotic onslaught and then rapidly multiplies in its newly vacated palace."

Carver, 2017, p.76-78

This metaphor is reflected in a number of contexts in Immune. So, the account includes (see Box 4, below) break ins, camps, communities, homes, lounging, palaces, penthouses, playgrounds, preferred places to live, real estate, residents, shops, squatters, suburban cul-de-sacs, and tenants .

What is for dinner?

The extracts presented above also demonstrate another recurring notion, that microbes and body cells experience 'eating' much like we do ('tasty morsel', 'dine together', 'banquet…buffet'). There are many other such illusions in 'Immune'.

We could explain human eating preferences and habits in purely mechanistic terms of chemistry, physics and biology – but most of us would think this would miss an important level of analysis (as if what people can tell us about what they think and feel about their favourite foods and their eating habits is irrelevant to their food consumption) and would be very reductive. Yet, when considering a single cell, such as a Kupffer cell, surely a mechanistic account in terms of chemistry, physics and biology is not reductionist, but exhaustive. Anything more is (as Einstein suggested about the aether) superfluous.

One favoured dining location is the skin:

"The Demodex dine on sebum (the waxy secretion we make to help waterproof our skin), as well as occasionally munching on our skin cells and even some unlucky commensal bacteria like Propionibacterium acnes…like many of us, P. acnes is a lipophile, which is to say it adores consuming fat. The sebum on our skin is like a layer of buttery, greasy goodness that has P. acnes smacking its lips. However, when P. acnes turns up to dine it has some seriously bad table manners, which can include dribbling chemicals all over our faces…[non-human] animal sebum lacks the triglyceride fats that P. acnes [2 ital] loves to picnic on."
p.82

Carver, 2017, pp.81-82

It is hopefully redundant, by this point, for me to point out that Propionibacterium acnes does not adore anything – neither preferred foodstuffs nor picnics – but has simply evolved to have a nutritional 'regime' that matches its habitat. Whilst this extract immediately offers a multi-course menu of metaphors, it is supplemented by a series of other semantic snacks. So 'Immune' also includes references to buffet carts, chocolate chips, cookies, devouring, easy meals, gobbling up, making food appetising, making food tastier, munching, a penchant for parma ham and rare steak, soft-boiled eggs, tasty treats and yummy desserts.

Can you have too much of a metaphorical good thing?

I am glad I bought 'Immune'. I enjoyed reading it, and learnt from it. But perhaps a more pertinent question is whether I would recommend it to a non-scientist* interested in learning something about immunity and the immune system. Probably, yes, but with reservations.

Is this because I am some kind of scientific purist (as well as a self-acknowledged pedant)? I would argue not: if only because I am well aware that my own understanding of many scientific topics is shallow and rests upon over-simplifications, and in some cases depends upon descriptive accounts of what strictly need to be appreciated in formal mathematical terms. I do not occupy sufficiently high ground to mock the novice learner's need for images and figures of speech to make sense of unfamiliar scientific ideas. As a teacher (and author) I draw on figurative language to help make the unfamiliar become familiar and the abstract seem concrete. But, as I pointed out above, figurative language can sometimes help reveal (to help make the unfamiliar, familiar); but can also sometimes obscure, a scientific account.

I have here before made a distinction between the general public making sense of science communication in subjective and objective terms. Objective understanding might be considered acquiring a creditable account (that would get good marks in an examination, for example). But perhaps that is an unfair test of a popular science book: perhaps a subjective making-sense, where the reader's curiosity is satisfied – because 'yes, I see, that makes sense to me' – is more pertinent. Carver has not written 'Immune' as a text book, and if readers come away thinking they have a much better grasp of the immune system (and I suspect most 'naive' readers certainly would think that) then it is a successful popular science book.

My reservation here is that we know many learners find it difficult to appreciate that cornerstone of modern biology, natural selection (e.g., Taber, 2017), and instead understand the living world in much more teleological terms – that biological processes meet ends – occur to achieve aims – and do so through structures which have been designed with certain functions in mind.

So, microbes, parasites, cells, and antibodies, which are described as though they are sentient and deliberate actors – indeed moral agents seeking strategic goals, and often being influenced by their personal aesthetic tastes – may help immunity seem to make sense, but perhaps by reinforcing misunderstandings of key foundational principles of biology.

In this, Catherine Carver is just one representative of a widespread tendency to describe the living world in such figurative terms. Indeed, I might suggest that Carver's framing of the immune system as a defence force facing hostile invaders makes 'Immune' a main-stream, conventional, text in that it reflects language widely used in public science discourse, and sometimes even found in technical articles in the primary literature.

A myth is a story that has broad cultural currency and offers meaning to a social group, usually involving supernatural entities (demons, superhuman heroes, figures with powerful magic – perhaps microbial aesthetes and sentient cells?), but which is not literally true. e.g., Your immune system comprises a vast army of brave and selfless soldiers seeking to protect you from intruders looking to do you harm: an immune response is a microcosm of the universal fight between good and evil?

My question, then, is not whether Carver was ill-advised to write 'Immune' in the way she has, but whether it is time to more generally reconsider the widespread use of the mythical 'war' analogy in talking about immunity and disease.


Notes

1 Even if, for example, some interactions between groups of ants from different nests {e.g., see 'Ant colony raids a rival nest | Natural World – Empire of the Desert Ants – BBC'} look just as violent as anything from human history, their 'battles' are surely not planned as part of some deliberate ongoing campaign of hostilities.


2 The bacteria infecting us, if they could conceptualise the situation (which they cannot), would have no more reason to consider themselves a disease, than humans who 'infected' an orchard and consumed all the fruit would consider themselves a disease. Microbes are not evil for damaging us, they are just being microbes.


3 If my rock analogy seems silly, it is because we immediately realise that rocks are just not the kind of entities that behave deliberately in the world. The same is true of microbes and body cells -they are just not the kind of entities that behave deliberately in the world, and as long as this is recognised such metaphorical language is harmless. But I am not sure that is so immediately obvious to readers in these cases.


4 Such an issue can arise with descriptions about people as well. If I want to share a joke with a friend I may wink. If a fly comes close to my eye I may blink. Potentially these two actions may seem indistinguishable to an observer. However, the first is a voluntary action, but in the second case the 'I' that blinks is not me the conscious entity that ascribes itself self-hood, but an autonomous and involuntary subsystem! In a sense a person winks, but has blinking done to her.


5 If entry to our cells was 'illegal' in the sense of being contrary to natural laws/laws of nature, it would not occur.

* A note on being a scientist. Any research scientists reading this might scoff at my characterisation of the readers of popular science books as being non-scientists with the implied suggestion that I, by comparison, should count as a scientist. I have never undertaken research in the natural sciences, and, although I have published in research journals, my work in science education would be considered as social science – which in the Anglophile world does not usually count as being considered 'science' per se. However, in the UK, the Science Council recognises science educators as professional scientists. Learned societies such as the Royal Society of Chemistry and the Institute of Physics will admit teachers of these subjects as professional members, and even Fellows once their contributions are considered sufficient. This potentially allows registration as a Chartered Scientist. Of course, the science teacher does not engage in the frontiers of a scientific research field in the way a research scientist does, however the science teacher requires not only a much broader knowledge of science, but also a specialist professional expertise that enables the teacher to interrogate and process scientific knowledge into a form suitable for teaching. This acknowledges the highly specialised nature of teaching as an expert professional activity which goes far beyond the notion of teaching as a craft that can be readily picked up (as sometimes suggested by politicians).


Work cited


"neutrophil is a key soldier"
"the human body is like an exceedingly well-fortified castle, defended by billions of soldiers"
"…the incredible arsenal that lives within us…"
"the hidden army"
"…our adaptive assassins, our T and B cells"
"The innate system is the first line of defence…"
skin: "…an exquisite barrier that keeps unwanted invaders out."
"…your airways are exceedingly well booby-trapped passages lined with goblet cells, which secrete a fine later of mucus to trap dirt and bacteria."
"Initially it was seen as a simple soldier with a basic skills set …Now we know it is a crafty assassin with a murderous array of killing techniques."
"…ninja skill of neutrophils…", "ninja neutrophils"
"macrophages are stationed at strategic sites…what an important outpost the liver is for the immune system"
"NK cells [have] killer ways"
"trigger-happy NK cells"
"Ever neat assassins, NK cells"
"vicious immune cells" compared to "a pack of really hungry Rottweilers"
interleukins are "pro-inflammatory little fire-starters"
"neutrophils, macrophages and other immune system soldiers"
"T cells…activate their invader-destroying skills."
"…a weapon with a name worthy of a Bond villain's invention: the Membrane Attack Complex"
"miniature mercenaries"
"a system whose raise d'etre is to destroy foreign invaders"
"everything we do exposes us to millions of potential invaders."
"…all invaders need an entry point…"
"these tiny sneaks [e.g., E. coli]"
"the dark-arts of pus-producing bacteria…"
Neisseria meningitidis: "this particular invader"
"foreign invaders"
"an aggressive border patrol"
'Tregs are the prefects of the immune system…"
"…the parasite larva has more in common with a time bomb…"
"T cells…are the grand high inquisitors of the immune system, spotting and destroying infected cells and even cancer…these assassins"
"imagining you have to make a Mr Potato Head army, and you know that the more variety in your vegetable warriors the better"
"this process is about …making a mutant army."
"they form a fighting force that rivals Marvel Comic's Fantasic Four"
"each antibody molecule released as a single soldier"
"The pancreas … acts as the commander-in-chief when its comes to controlling blood sugar levels."
"our tiny but deadly defenders"
"cells in the spleen with a specialised killer-skill"
"wears a mask that conceals its killer features from its would-be assassins"
"the microbiological mass murderers…the serial killers"
"PA [protective antigen] is the muscled henchman"
"the murderous cast of immune cells and messengers…this awe-inspiring army"
"a microscopic army, capable of seeking out and destroying bacteria"
"the terminators are targeted killers"
"weaponised E. coli
Box 1: References to the immune system and its components as a defence force

"a kamikaze blaze of microbe-massacring glory"
"an eternal war between our bodies and the legions of bacteria, viruses, fungi and parasites that surround us"
"these invaders' attempts are thwarted"
"battles"
"all my innate defences would essentially hold the fort and in many instances this first line would be enough to wipe out the invader before the adaptive system gets a chance to craft bespoke weaponry."
"the tears we shed [are] a form of chemical warfare."
"…allowing the neutrophils to migrate through the blood vessel and into the battlefield of the tissue beyond"
"the cell contracts itself tightly before exploding"
"their friendly fire contributed to the death of the victim."
"spewing microbe-dissolving chemicals into the surround tissue. This allows the neutrophil to damage many microbes at once, a bit like fishing by throwing dynamite into the water."
"NK [natural killer] cells target the microbes that have made it inside our cells."
"NK cells attack"
"…the initial hole-poking assault…"
"all part of the NK cell's plan to kill the cell."
"…they trip the cell's self-destruct switch"
"expose a cell to a severe, but not quite lethal threat…transform the cell into a hardened survivor"
immune cells have an "ability to go on the rampage"
"call up … immune system soldiers to mount a response"
"leukaemia … has decimated a type of white blood cells called T cells"
"it behaves like a Trojan horse [as in the siege of the City of Troy]"
"telling our soldier cells to kick back and take some R & R"
"the smoke signals of infection"
"…like a showing of tiny hand grenades on the surrounding cells."
"the donor cells would be vastly outnumbered and it would be like a band of rebels taking on a vast army on its home turf"
"the recipient's own immune system is in a weakened state and unable to fight back"
"…the antibodies …are therefore able to give a hostile welcome to alpha-gal-wearing malaria parasites."
"…our gut bacteria effectively provide a training ground for the immune system – a boot camp led by billions of bacteria which teaches us to develop an arsenal of antibodies to tackle common foreign invader fingerprints…"
"fighting on certain fronts"
"edgy alliance"
"shore up the intestinal defences by reinforcing the tight junctions which link the gut cells together"
"our gut's security fence"
"a self-cell that should be defended, not attacked"
"this mouse-shaped Trojan horse"
"the scanning eyes of the immune system"
"a form of border control, policing"
"…the bacteria-bashing brilliance…"
"…the IgA effectively blocks and disables the invaders' docking stations…"
"B cells and their multi-class antibody armoury have the ability to launch a tailored assassination campaign against almost anything"
"the exquisitely tailored assassination of bacteria, viruses and anything else that dares enter the body"
"One of the seminal victories in our war on bugs"
"Some bacteria have a sugar-based cloaking device"
"…tripped by the pollen attaching to the IgE-primed mast cells and, like pulling a pin on a grenade, causing them to unleash their allergy-inducing chemicals."
"The almost instant assault of the immediate phase reaction occurs within minutes as the dirty bomb-like explosion of the mast cell fill the local area with a variety of rapidly acting chemicals."
"..the battle against infectious diseases."
"teaching the patrolling forces of the immune system to stand down if the cell they're interrogating is a healthy cell that belong to the body. It's a bit like a border patrol force wandering through the body and checking passports"
"like a training camp for the newly created border guards".
"ordering those that react incorrectly to self-destruct"
"These bacteria have a sugar-based polysaccharide outer shell, which acts like a cloaking device"
"the [oncolytic] viruses have a Swiss army knife selection of killer techniques"
"This approach slaughters these foot soldiers of our immune system…"
"they [macrophages] have picked up a time bomb"
"antibodies that act like heat-seeking missiles"
"Kadcyla …has a double-pronged attack."
"we are setting up easy antibiotic assault courses all over the place"
"His suicidal minions were engineered to seek out a pneumonia-causing bacterium by the name of Pseudomonas aeruginosa and explode in its presence releasing a toxic cloud of a Pseudomonas-slaughtering chemical called pyocin."
"it could secrete its killer payload"
"stimulate the little terminators to produce and release their chemical warfare."
Box 2: References to disease and immune processes as war and violent activity



"The macrophage's … job as a first responder…"
" osteoclasts and osteoblasts" are "Carver refers to "the bony equivalent of yin and yang…osteoblasts are the builders in this relationship" (said to be "toiling") …osteoclast, whose role is the constant gardener of our bones"
"…a white blood cell called the regulatory T cell, or 'Treg' to its friends…"
"…this biological barcode lets the T cell know that it's looking at a self-cell …"
"…the ball of cells that makes up the new embryo finishes bumbling along the fallopian tube and finds a spot in the uterus to burrow into…"
"By using this mouse-shaped Trojan horse the parasite gets itself delivered directly into the cat's gut, which is where Toxoplasma likes to get it on for the sexual reproduction stage of its lifecycle."
"It's as if the trypanosome has a bag of hats that it can whip out and use to play dressing-up to outwit the immune system."
"proteins… help smuggle the ApoL1 into the parasite"
"Some parasites have a partner in crime…"
"the chosen strategy of the roundworm Wuchereria bancrofti…uses a bacterium to help cloak itself from the immune system."
"the work of a master of disguise…precisely what Wuchereria bancrofti is."
"…its bacterial side-kick"
"parasites that act as puppet masters for our white blood cells and direct our immune response down a losing strategy"
"parasites with sartorial skills that craft themselves a human suit made from scavenged proteins"
"parasites toy with us"
"B cells have one last technique"
"Chemical messengers beckon these B cells"
"what AID [activation induced deaminase] seeks to mess with"
"Each class [of antibody] has its own modus operandi for attacking microbes"
"in terms of skills, IgG can activate the complement cascade"
"…one of its [IgA] key killer skills is to block any wannabe invaders from making their way inside us."
"the helper T cell and the cytotoxic T cell, which take different approaches to achieve the same aim: the exquisitely tailored assassination of bacteria, viruses and anything else that dares enter the body."
"B cells, cytoxic T cells and macrophages in their quest to kill invaders"
"T cells interact with their quarry"
"add a frisson of encouragement to the T cell, spurring it on to activation."
"the brutally egalitarian smallpox"
"Polio is another virus that knows all about image problems."
"the guilty allergen"
"IgE and mast cells are to blame for this severe reaction [anaphylaxis]"
"…The T regulatory cells identify and suppress immune cells with an unhealthy interest in normal cells."
"the skills of a type of virus well versed in the dark arts of integrating into human DNA"
"The spleen is a multi-talented organ"
"to get rid of the crafty, cloaked bacteria"
"Even once cells are able to grow despite the chemical melting pot they're stewing in telling them to cease and desist…"
"It is believed that tumour cells bobbing about in the bloodstream try to evade the immune system by coating themselves in platelets…"
"the cancer's ability to adorn itself"
"They [oncolytic viruses] work by …drawing the attention of the immune system"
"when the replicating virus is finally ready to pop its little incubator open"
"…anthrax, which lurks in the alveoli awaiting its cellular carriage: our macrophages…"
"The macrophages are doing what they ought … Completely unaware that they have picked up a time bomb…"
"the microbial thwarting talents of interferons"
"…your mAbs will do the legwork for you, incessantly scouring the body for their target destination like tiny, demented postal workers without a good union."
"One of the tumour techniques is to give any enquiring T cells a 'these aren't the cells you're looking for' handshake that sends them on their way in a deactivated state, unaware they have let the cancer cells off the hook. Checkpoint inhibitor mAbs bind to the T cell and prevent the deactivating handshake from happening. This leaves the T cell alert and able to recognise and destroy the cancer cells."
"A third neutrophil strategy…"
"all part of the NK cell's plan to kill the cell."
"…a majestic dance of immune cells and messengers, carefully choreographed…"
"So my immune system's bag of tricks might not currently include a smallpox solution, but if I were to contract the disease my adaptive immune response would try its hardest to create one to kill the virus before it killed me."
"Thus earwax can catch, kill and kick out the multitude of microbes that wheedle their way into out ears…"
"Up to 200 million neutrophils gush out of our bone marrow and into the blood stream every day. They race around the blood on the look-out for evidence of infection."
"a process called 'opsonisation' make consuming the bacterial more appealing to neutrophils"
"the same siren call of inflammation and infection that beckoned the neutrophils."
"…a set of varied and diverse circumstances can prompt multiple macrophages to congregate together and, like a massive Transformer, self-assemble into one magnificent giant cell boasting multiple nuclei."
"The cell responds to the initial hole-poking assault by trying to repair itself…At the same time that it pulls in the perforin holes, the cell unwittingly pulls in a family of protein-eating granzymes…"
"the gigantosome is more than just a pinched-off hole-riddled piece of membrane; its creation was all part of the NK cell's plan to kill the cell."
caspases in cells "play an epic game of tag"
Arachidonic acid: "Normally it just minds its own business"
"The interferon molecule insinuates itself into the local area"
"The chemokines …their ability to beckon a colourful array of cells to a particular location…they can call up neutrophils, macrophages and other immune system soldiers to mount a response to injury and infection…"
"chemicals that can tell these cells where to go and what to do. These crafty chemicals…"
"…the triad of goals of the complement system…"
"It's the T cell's job to spot infected or abnormal cells."
"Microbes aren't easy bedfellows"
"…the 'lean' microbes won out over the 'obese' ones."
"IgD is the most enigmatic of all the immunoglobins"

"the parasite larva …treacherous"
Box 3: Examples of phrasing which might suggest that microbes, cells, etc., are sentient actors with human motivations

"Bifidobacterium infantis, a normal resident of the healthy infant gut"
"trillions of microbes that make us their home"
"…a much more diverse community of inner residents…"
"Entamoeba … just happened to prefer to live in a multicultural colon."
"…the mouth had the least stable community, like the microbial equivalent of transient squatters, while the vagina was the quiet suburban cul-de-sac of the map, with a fairly fixed mix of residents."
"that's where they [Mycobacteria] set up home"
"Neisseria meningitidis "sets up shop inside our cells…it breaks in…"
"…Heliocobacter pylori (a.k.a H. pylori), a bacterium that makes its home in the sticky mucus that lines the stomach. While the mucus gives H. pylori some protection from the gastric acid, it also employed a bit of clever chemistry to make its home a touch more comfortable."
Dracunculus medinensis will "seek out a mate, turning the abdominal wall into their sexual playground."
"…plenty of creepy crawlies have been known to to call the human brain home, lounging among our delicate little grey cells…"
the tapeworm Spirometra erinaceieuropaei : "…this particular tenant ensconced in their grey matter."
"the worm…wriggled up through his body to reach its cranial penthouse where it could enjoy the luxury of a very special hiding spot."
"There are flatworms, roundworms hookworms, whipworms, fleas and ticks, lice and amoeba. They're all queuing up to get a room at the palace of parasites"
Clostridium tetani "can often set up camp in soil",
"About 75 million people worldwide are thought to carry the dwarf tapeworm in their small intestine, where it lives a fairly innocuous life and causes its host few if any symptoms."
"Though it may not seem like it, our nostrils are prime real estate and rival bacteria fight each other for resources, a fight which includes chemical warfare."
"…we'll meet the creepy critters that like to call us home and the ways our immune system tries to show them the door."
Box 4: Microbes and cells described as the kind of entities which look for and set up homes.

"an all-you-can-eat oligosaccharide buffet for B. infantis [Bifidobacterium infantis]"
"…complement's ability to make these bacteria seem tastier to our macrophages…"
"Mycobacteria… actually want to be gobbled up by our macrophages…"
"sprinkling C3b on the surface of bacteria makes them much more appetising to microbe-munching cells"
macrophages 'devour' the remains of dead cells
"…Salmonella, which likes a soft-boiled egg, and Toxoplasma gondii, which shares my penchant for parma ham and rare steak."
Dracunculus medinensis "looks like an easy meal for a peckish water flea. Sadly for the water flea the parasite larva has more in common with a time bomb than a tasty snack ever should, and the treacherous morsel spends the next 14 days inside the flea…"
"…flagging a microbe as munchable for macrophages…"
"IgG …can mark targets as munchable. Thus any bacterium, virus or parasite coated in IgG finds itself the yummiest dessert on the buffet cart and every hungry macrophage rushes to get itself a tasty treat."
"…from our brain to our bones, we are riddled with munching macrophages…"
opsonisation: "much like sprinkling tiny chocolate chips on a bacterial cookie"
"Demodex dine on sebum…as well as occasionally munching on our skin cells"
"P. acnes is a lipophile, which is to say it adores consuming fat. The sebum on our skin is like a layer of buttery, greasy goodness that has P. acnes smacking its lips."
"when "P. acnes turns up to dine it has some seriously bad table manners"
" P. acnes loves to picnic."
Box 5: References to the culinary preferences and habits of entities such as microbes and immune cells

Making molecular mechanisms familiar

A reflection on the pedagogy in Andrew Scott's 'Vital Principles'


Keith S. Taber



Andrew Scott's introduction to the chemistry of the cell is populated by a diverse cast of characters, including ballot machines, beads; blind engineers and blind-folded art-seekers; builders and breaker's yards; cars, freight vehicles and boats; Christmas shoppers, dancers; gatecrashers (despite gatekeepers) and their hosts; invaders, jack-in-the-boxes, legal summonses, light bulbs, mixing bowls, maelstroms, music tapes, office blocks; oceans, seas, rivers, streams, floods and pools; skeletons and their bones, split personalities, springs; sorting offices and postal systems; turnstiles, the water cycle, water wheels, ropes, pulleys and pumps; work benches and work stations; and weeding and seaweed forests.


Scott, A. (1988). Vital Principles. The molecular mechanisms of life. Basil Blackwell.


The task of the popular science writer

This piece is not a formal review of, what is, now, hardly a recent title 1, but a reflection on an example of a science book aimed at – not a specific level of student, but – a more general audience. The author of a 'popular science book' has both a key advantage over the author of many science textbooks, and a challenge. The advantage is being able to define your own topic – deciding what you wish to cover and in how much detail. By contrast, a textbook author, certainly at a level related to formal national examination courses, has to 'cover' the specified material. 2

However the textbook author has the advantage of being able to rely on a fairly well defined model of the expected background of the readership. 3 Students taking 'A level' physics (for example) will be expected to have already covered a certain range of material at a known level through science teaching at school ('G.C.S.E. level') and to have also demonstrated a high level of competence against the school maths curriculum. This is important because human learning is incremental, and interpretive, and so iterative: we can only take in a certain amount of new material at any time, and we make sense of it in terms of our pool of existing interpretative resources (past learning and experiences, etc.) 4


The teacher or textbook author designs their presentation of material based on a mental model of the interpretive resources (e.g., prerequisite learning, familiar cultural referents that may be useful in making analogies or similes, etc.) available to, and likely to be activated in the mind of, the learner when engaging with the presentation.


So, the science teacher works with a model of the thinking of the students, so as to pitch material in manageable learning quanta, that should relate to the prior learning. The teacher's mental model can never be perfect, and consequently teaching-learning often fails (so the good teacher becomes a 'learning doctor' diagnosing where things have gone wrong). However, at least the teacher has a solid starting point, when teaching 11 year olds, or 15 year olds, or new undergraduates, or whatever.

The textbook author shares this, but the popular science author has a potential readership of all ages and nationalities and levels of background in the subject. Presumably the reader has some level of interest in the topic (always helpful to support engagement) but beyond that…

Now the role of the science communicator – be they research scientist with a general audience, teacher, lecturer, textbook author, journalist, documentary producer, or popular science author – is to make what is currently unfamiliar to the learner into something familiar. The teacher needs to make sure the learners both have the prerequisite background for new teaching and appreciate how the new material relates to and builds upon it. Even then, they will often rely on other techniques to make the unfamiliar familiar – such as offfering analogies and similes, anthropomorphism, narratives, models, and so forth.

Read about making the unfamiliar familiar

As the popular science writer does not know about the background knowledge and understanding of her readers, and, indeed, this is likely to be extremely varied across the readership, she has to reply more on these pedagogic tactics. Or rather, a subset of these ways of making the unfamiliar familiar (as the teacher can use gestures, and computer animations, and physical models; and even get the class to role-play, say, electrons moving through a circuit, or proteins binding to enzymes). Thus, popular science books abound with analogies, similes, metaphors and the like – offering links between abstract scientific concepts, and what (the author anticipates) are phenomena or ideas familiar to readers from everyday life. In this regard, Andrew Scott does not disappoint.

Andrew Scott

Scott's website tells us he has a B.Sc. in biochemistry from Edinburgh, and a Ph.D. from Cambridge in chemistry, and that he has produced "science journalism published by academic publishers, newspapers, magazines and websites", and he is an "author of books translated into many languages". I have not read his other books (yet), but thought that Vital Principles did a good job of covering a great deal of complex material – basically biochemistry. It was fairly introductory (so I doubt much could be considered outdated) but nonetheless tackled a challenging and complex topic for someone coming to the book with limited background.

I had a few quibbles with some specific points made – mainly relating to the treatment of underpinning physics and chemistry 5 – but generally enjoyed the text and thinking about the various comparisons the author made in order to help make the unfamiliar familiar to his readership.

Metaphors for molecular mechanisms

Andrew Scott's introduction to the chemistry of the cell is populated by a diverse cast of characters, including ballot machines, beads; blind engineers and blind-folded art-seekers; builders and breaker's yards; cars, freight vehicles and boats; Christmas shoppers, dancers; gatecrashers (despite gatekeepers) and their hosts; invaders, jack-in-the-boxes, legal summonses, light bulbs, mixing bowls, maelstroms, music tapes, office blocks; oceans, seas, rivers, streams, floods and pools; skeletons and their bones, split personalities, springs; sorting offices and postal systems; turnstiles, the water cycle, water wheels, ropes, pulleys and pumps; work benches and work stations; and weeding and seaweed forests.

A wide range of metaphors are found in the book. Some are so ubiquitous in popular science discourse that it may be objected they are not really metaphors at all. So, do "… 'chloroplasts'…trap the energy of sunlight…"? This is a simplification of course (and Scott does go into some detail of the process), but does photosynthesis actually 'trap' the energy of sunlight? That is, is this just a simplification, or is it a figurative use of language? Scott is well aware that energy is not a concept it is easy to fully appreciate,

"Energy is really an idea invented by mankind, rather than some definite thing…

energy can be thought of as some sort of 'force resistance' or 'antiforce' able to counteract the pushes or pulls of the fundamental forces."

pp.25-26

But considerable ingenuity has been used in making the biochemistry of the cell familiar through metaphor:

  • lipids "have split personalities" (and they have 'heads' and 'tails' of course)
  • proteins can "float around within a sea of lipid"
  • proteins are "the molecular workers"
  • the inside of cells can be a "seething 'metabolite pool' – a maelstrom of molecules"; "a swirling sea of chemical activity…the seething sea of metabolism" (so, some appealing alliteration, as well, here 6);
  • the molecules of the cell cytosol are "dancing"
  • "...small compressed springs of ATP, can be used to jack up the chemistry of the cell…"
  • "…thermal motion turns much of the chemical microworld into a molecular mixing bowl."
  • "The membranes of living cells…form a boundary to all cells, and they cordon off specific regions within a cell into distinct organelles."
  • "Some of these gatecrashers within other cells would then have slowly evolved into the mitochondria and chloroplasts of present-day life..."
  • "the 'Ca2+ channels' to open up, this causes Ca2+ ions to flood into the cell …"
  • "the 'ribosomes' … are the chemical automatons"

The figurative flavour of the author's language is established early in the book,

"In a feat of stunning self-regulating choreography, billions of atoms, molecules and ions become a part of the frantic dance we call life. Each revolution of our planet in its stellar spotlight raises a little bit of the dust of earth into the dance of life, while a little bit of the life crumbles back into dust."

p.1

Phew – there is quite a lot going on there. Life is a dance, moreover a frantic dance, of molecular level particles: but not some random dance (though it relies on molecular motion that is said to be a random dance, p.42), rather one that is choreographed, indeed, self-choreographed. Life has agency. It is a dance that is in some sense powered by the revolution of the earth (abound its axis? around its star?) which somehow involves the cycling of dust into, and back out, of life – dust to dust. The reference to a stellar spotlight seems at odds with the Sun as symmetrically radiating in all directions out into the cosmos – the earth moves through that radiation field, but could not escape it by changing orbit. Perhaps this image is meant to refer to how the daily rotation of the earth brings its surface into, and out of, illumination.

So, there is not a spotlight in any literal, sense (the reference to "the central high energy furnace", p.39, is perhaps a more accurate metaphor), but the 'stellar spotlight' is a metaphor that offers a sense of changing illumination.

Similarly, the choreographed dance is metaphorical. Obviously molecules do not dance (a deliberate form of expression), but this gives an impression of the molecular movement within living things. That movement is not choreographed in the sense of something designed by a creator. But something has led to the apparently chaotic movements of billions of molecules and ions, of different kinds, giving rise to highly organised complex entities (organisms) emerging from all this activity. Perhaps we should think of one of those overblown, heavily populated, dance sequences in Hollywood films of the mid 20th century (e.g., as lampooned in Mel Brook's Oscar winning 'The Directors')?

So, in Vital Principles, Scott seeks to make the abstract and complex ideas of science seem familiar through metaphors that can offer a feel for the basic ideas of biochemistry. The use of metaphor in science teaching and other forms of science communication is a well established technique.

Read about science metaphors


Nature and nurture

Later in the book a reader will find that the metaphorical choreographer is natural selection, and natural selection is just the tautological selection of what can best reproduce itself in the environment in which it exists,

"…the brute and blind force of natural selection can be relied upon to weed out the harmful mutations and nurture the beneficial ones. We must always remember, however, that the criterion by which natural selection judges mutations as harmful or beneficial is simply the effect of the mutations on an organism's ability to pass its genetic information on to future generations."

p.182

So, natural selection is a force which is brute and blind (more metaphors) and is able to either weed out (yes, another metaphor) or nurture. That is an interesting choice of term given the popular (but misleadingly over-simplistic) contrast often made in everyday discourse between 'nature' (in the sense of genetics) and 'nurture' (in the sense of environmental conditions). Although natural selection is 'blind', it is said to be able to make judgements.

Form and function in biology

Here we enter one of the major issues in teaching about biology: at one level, that of a naturalistic explanation 7, there is no purpose in life: and anatomical structures, biochemical processes, even instinctive behaviours, have no purpose – they just are; and because they were components of complexes of features that were replicated, they have survived (and have 'survival value').

Yet, it seems so obvious that legs are for walking, eyes are for seeing, and the heart's function is to pump blood around the body. A purist would deny each of these (strictly these suggestions are teleological) and replace each simple statement with a formally worded paragraph completely excluding any reference to, or hint at, purpose.

So, although it seems quite natural to write

"…hormones… are released from one cell to influence the activity of other cells;

…neurotransmitters…are released from nerve cells to transmit a nerve impulse…"

pp.120-121

we might ask: is this misleading?

One could argue that in this area of science we are working with a model which is founded on the theory of natural selection and which posits the evolved features of anatomy, physiology, biochemistry,etc., that increase fitness are analogous to designed and purposeful features that support the project of the continuation of life.

Something that scientists are very quick to deny (that organisms have been designed with purposes in mind) is nevertheless the basis of a useful analogy (i.e., we can consider the organism as if a kind of designed system that has coordinated component parts that each have roles in maintaining the 'living' status of the overall system). We then get the economy of language where

  • hormones and neurotransmitters are released for 'this' purpose, to carry out 'that' function;

being selected (!) over

  • more abstract and complex descriptions of how certain patterns of activity are retained because they are indirectly selected for along with the wider system they are embedded in.

Do scientists sometimes forget they are working with a model or analogy here? I expect so. Do learners appreciate that the 'functions' of organs and molecules in the living thing are only figurative in this sense? Perhaps, sometimes, but – surely -more often, not; and this probably both contributes to, and is encouraged by, the known learning demand of appreciating the "blind [nature of the] force of natural selection".

Scott refers to proteins having a particular task (language which suggests purpose and perhaps design) whilst being clear he is only referring to the outcomes of physical interactions,

"A protein folds up into a conformation which is determined by its amino acid sequence, and which presents to the environment around it a chemical surface which allows the protein to perform its particular chemical task; and the folding and the performance of the task (and, indeed, the creation of the protein in the first place) all proceed automatically governed only by physical laws and forces of nature – particularly the electromagnetic force."

pp.54-55

In practice, biologists and medical scientists – and indeed the rest of us – find it much more convenient to understand organisms in terms of form and function. That is fine if you always keep in mind that natural selection only judges mutations metaphorically. Natural selection is not the kind of entity which can make a judgement, but it is a process that we can conceptualise as if it makes judgements.

This is a difficult balancing act:

"Nature is a blind but a supremely effective engineer. Through the agency of undirected mutation she continually adjusts the structure and the mechanisms of the living things on earth."

p.182

Nature is here treated as if a person: she is an engineer tinkering with her mechanisms. Personification of nature is a long-standing trope, once common among philosophers and not always eschewed by scientists in their writings (e.g., Nicolaus Copernicus, Henri Poincaré, Michael Faraday, even Albert Einstein have personified Nature) – and she is always female.

But usually a competent engineer tinkers according to a plan, or at least with a purpose in mind, whereas nature's tinkering is here described as 'undirected' – it is like she arbitrarily changes the size of a gear or modifies the steam pressure in a cylinder or changes the number of wheels on the locomotive, and then tinkers some more with those that stay on the tracks and manage to keep moving.

Read about personification in science

"All proteins begin life…"

Anthropomorphism: living metaphors

Personification (by referring to her, she, etc.) is not needed to imply entities have some human traits. Indeed, a very common pedagogic technique used when explaining science, anthropomorphism, is to use a kind of metaphorical language which treats inanimate objects or non-human beings as if they are people – as if they can feel, and think, and plan, and desire; and so forth.

  • "Once an enzyme had met and captured the required starting materials …"
  • "Some [non-protein metabolites] act as 'coenzymes', which becomes bound to enzymes and help them to perform their catalytic tasks."
  • "Cells, which had previously been aggressively independent individualists, discovered the advantages of communal life."
  • "descendants of cells which took up residence within other cells and then became so dependent on their hosts, and also so useful to them, that neither hosts nor gatecrashers could afford to live apart."

So, for example, plants are living beings, but do not have a central nervous system and do not experience and reflect on life as people do: so, they do not wish for things,

"…the oxidation of sugars, is also performed by plants when they wish to convert some of their energy stores (largely held in the form of complex carbohydrates) back into ATP."

p.144

Again, such phrasing offers economy of language. Plants do not wish, but any technically correct statement would likely be more complicated and so, arguably, more difficult to appreciate.

Dead metaphors

A key issue in discussing metaphors is that in many cases different readers are likely to disagree over whether a term is indeed being used figuratively or literally. Language is fluid (metaphorically speaking), and a major way language grows is where the need for new terms (to denote newly invented artefacts or newly discovered phenomena) is satisfied by offering an existing term as a metaphor. Often, in time the metaphor becomes adopted as standard usage – so, no longer a metaphor. These examples are sometimes called dead metaphors (or clichéd metaphors). So, for example, at some point, many decades ago, astronomers started to talk of the 'life cycle' of stars which have a moment of 'birth' and eventual 'death'. These metaphors have become so established they are now treated as formal terms in the language of the discipline, regularly used in academic papers as well as more general discourse (see 'The passing of stars: Birth, death, and afterlife in the universe').

So, when Scott writes of "how some micro-organism, say a virus, invades the body…"(p.109) it is very likely most readers will not notice 'invade' as being a metaphor, as this usage is widely used and so probably familiar. The (former?) metaphor is extended to describe selective immune components "binding to foreign invaders [that] can act as a very effective means of defence against disease." These terms are very widely used in discussing infections: though of course there are substantive differences, as well as similarities, with when a country defends itself against actual foreign invaders.

I suspect that considering the lipid bilayer to be "a stable sandwich of two layers of lipid molecules" (p.115) is for many, a dead metaphor. The reference to a DNA double-helix leading to"two daughter double-helices" reflects how atomic nuclei and cells are said to give rise to 'daughters' on fission: again terminology that has become standard in the field.

Sharing a psuedo-explanation for covalent bonding

One phrase that seems to have become a dead metaphor is the notion of electrons being 'shared' in molecules, which "…are formed when their constituent atoms come together to leave at least some of their electrons shared between them" (pp.28-29). Whilst this seems harmless as a description of the structure, it is also used as an explanation of the bonding:

"'hydrogen molecules and water molecules (and all other molecules) are held together by virtue of the fact that electrons are shared between the individual atoms involved, a similarity recognised by saying that in such cases the atoms are held together by 'covalent' bonds.

p.29

But we might ask: How does 'sharing' a pair of electrons explain the molecule being 'held together'? Perhaps a couple with a strained relationship might be held together by sharing a house; or two schools in a confederation by sharing a playing field; or two scuba divers might be held together if the breathing equipment of one had failed so that they only had one functioning oxygen cylinder shared between them?

In these examples, there is of course a sense of ownership involved. Atoms do not 'own' 'their' electrons: the only bonds are electromagnetic; not legal or moral. This may seem so obvious it does not deserve noting: but some learners do come to think that the electrons are owned by specific atoms, and therefore can be given, borrowed, stolen, and so forth, but should ultimately return to their 'own' atom! So, if we acknowledge that there is no ownership of electrons, then what does it even mean for atoms to 'share' them?

So, why would two atoms, each with an electron, become bound by pooling these resources? (Would sharing two houses keep our couple with a strained relationship together; or just offer them a ready way to separate?) The metaphor does not seem to help us understand, but the notion of a covalent bond as a shared electron pair is so well-established that the description commonly slips into an explanation without the explainer noticing it is only a pseudo-explanation (a statement that has the form of an explanation but does not explain anything, e.g., "a covalent bond holds two atoms together because they share a paired of electrons").

Read about types of pseudo-explanation

Elsewhere in the book Scott does explain (if still anthropomorphically) that viable reactions occur because:

"In the new configuration, in other words, the electromagnetic forces of attraction and repulsion between all the electrons and nuclei involved might be more fully satisfied, or less 'strained' than they were before the reaction took place."

p.36

How are metaphors interpreted?

The question that always comes to my mind when I see metaphorical language used in science communication, is how is this understood by the audience? Where I am reading about science that I basically understand reasonably well (and I was a science teacher for many years, so I suspect I cannot be seen a typical reader of such a book) I do reflect on the metaphors and what they are meant to convey. But that means I am often using the familiar science to think about the metaphor, whereas the purpose of the metaphor is to help someone who does not already know the science get a take on it. This leads me to two questions:

  • to what extent does the metaphor give the reader a sense of understanding the science?
  • to what extent does the metaphor support the reader in acquiring an understanding that matches the scientific account?

These are genuine questions about the (subjective and objective) effectiveness of such devices for making the science familiar. There is an interesting potential research programme there.


Shifting to similes

The difference between metaphors and similes is how they are phrased. Both make a comparison between what is being explained/discussed and something assumed to be more familiar. A metaphor describes the target notion as being the comparison (nature is an engineer), but the listener/reader is expected to realise this is meant figuratively, as a comparison. A simile makes the comparison explicit. The comparison is marked – often by the use of 'as' or 'like' as when physicist Max Planck suggested that the law of conservation of energy was "like a sacred commandment".

Read about examples of similes in science

So, when Scott refers to how proteins "act as freight vehicles transporting various chemicals around the body", and "as chemical messages which are sent from one cell to another" (p.10), these are similes.

Springs are used as similes for the interactions between molecules or ions in solids or the bonds within molecules

"…even in solids the constituent molecules and atoms and ions are constantly jostling against one another and often vibrating internally like tiny sub-microscopic springs. All chemical bonds behave a bit like tiny springs, constantly being stretched and compressed as the chemicals they are part of are jostled about by the motion of the other chemicals all around them."

p.39

[Actually the bonds in molecules or crystals are behaving like springs because of the inherent energy of the molecule or lattice: the 'jostling' can transfer energy between molecules/ions and 'springs' so that the patterns of "being stretched and compressed" change, but it is always there. The average amount of 'jostling' depends on the temperature of the material. 5]

In the way the word is usually used in English, jostling is actually due to the deliberate actions of agents – pushing through a crowd for example, so strictly jostling here can be seen as an anthropomorphic metaphor, but the intended meanings seems very clear – so, I suspect many readers will not even have noticed this was another use of figurative language.


One way of marking phrases meant as similes is putting then in inverted commas, so-called scare-quotes, as in

"A rather simple chemical 'cap', for example, is added to the start of the RNA, while a long 'tail' consisting of many copies of the nucleotide A is added to its end…The most significant modifications to the precursor, however, involve the removal of specific portions from the interior [sic] of the RNA molecule, and the joining together of the remaining portions into mature mRNA… This 'splicing' process …"

p.79

Here we have something akin to a cap, and something akin to a tail. As noted above, a difficulty in labelling terms as metaphors or similes is that language is not static, but constantly changing. In science we often see terms borrowed metaphorically from everyday life to label a technical process as being somewhat like something familiar – only for the term to become adopted within the field as a technical term. The adopted terms become literal, with a related, but somewhat different – and usually more precise – meaning in scientific discourse. (This can be the basis of one class of learning impediments as students may not realise the familiar term has specials affordances or restrictions in its technical context.)

Here 'splicing' is marked as a simile – there is a process seen as somewhat similar to how, for example, radio programmes and musical recordings used to be edited by the cutting and resequencing strips of magnetic tape. Yet gene splicing is now widely accepted as a literal use of splicing, rather than being considered figurative. [I suspect a young person who was told about, for example, the Beatles experiments with tape splicing might guess the term is used because the process is like gene splicing!]

The following quote marks a number of similes by placing them within inverted commas:

"The interior of the cell is criss-crossed by a network of structural proteins which is known as the cytoskeleton. The long protein 'bones' of this skeleton are formed by the spontaneous aggregation of many individual globular protein molecules…

Cells use many strong chemical 'pillars' and 'beams' and 'glues' and 'cements', both inside them, to hold the internal structure of cells together, and outside of them, to hold different cells together; but the electromagnetic force is the fundamental 'glue' upon which they all depend."

pp.995-6

Again the phrasing here suggests something being deliberately undertaken towards some end by an active agent (teleology): the cell uses these construction materials for a purpose.

There are various other similes offered – some marked with inverted commas, some with explicit references to being comparisons ('kind of', 'act as', 'sort of', etc.)

  • "…amino acids comprise the chemical 'alphabet' from which the story of protein-based life (i.e., all life on earth) is constructed"
  • "the endoplasmic reticulum is a kind of molecular 'sorting office'"
    • endosomes and lysomes "form a kind of intracellular digestive system and 'breaker's yard'."
    • "Proteins can act as gatekeepers of the cell…"
    • "Proteins can…act as chemical controllers"
    • proteins "can act as defensive weapons"
    • "The proteins which perform these feats are not gates, but 'pumps'..."
    • "Proteins could be described as the molecular workers which actually construct and maintain all cells…"
    • "…proteins are the molecular 'labourers' of life, while genes are the molecular 'manuals' which store the information needed to make new generations of protein labourers"
    • "Membrane proteins often float around within a sea of lipid (although they can also be 'held at anchor' in the one spot if required)"
    • "A ribosome travels down its attached mRNA, a bit like a bead running down a thread (or sometimes like a thread being pulled through a bead)..."
    • "…the 'ribosomes' – molecular 'work-benches' composed of protein and RNA…"
    • Nucleic acids "act as genetic moulds"
    • "the high energy structure of ATP really is very similar to the high energy state of a compressed spring"
    • "Some vital non-protein metabolites act as a sort of 'energy currency'…"

Advancing to analogies

Metaphors and similes point out a comparison, without detailing the nature and limits of that comparison. A key feature of an analogy is there is a 'structural mapping': that is that two systems can be represented as having analogous structural features. In practice, the use of analogy goes beyond suggesting there is a comparison, to specifying, at least to some degree, how the analogy maps onto the target.

Read about examples of analogies in science

Scott employs a number of analogies for readers. He develops the static image of the cell skeleton (met above) with its 'bones', 'pillars' and 'beams' into a dynamic scenario:

"Structural proteins are often referred to as the molecular scaffolding of life, and the analogy is quite apt since so many structural proteins are long fibres or rods; but we think of scaffolding as a static, unchanging, framework. Imagine, however, a structure built of scaffolding in which some of the scaffolding rods were able to slide past one another and then hold the whole framework in new positions."

p.96

Many good metaphors/similes may be based upon comparisons of this type, but they do not become analogies until this is set out, rather than being left to the listener/reader to deduce. For this reason, analogies are better tools to use in teaching than similes as they do not rely on the learners inferring (guessing?) what the points of comparison are intended to be. 8

So, Scott offers the simile of molecules released as 'messengers', but then locates this in the analogy of the postal system, before using another analogy to specify the kind of message being communicated,

"Cells achieve such chemical communication in various ways, but the most vital way is by releasing chemical 'messenger' molecules (the biological equivalent of the postal system, if you like analogies), and many of these messengers are either proteins, or small fragments of proteins."

"A biological messenger molecular is more like a legal summons than a friendly note or some junk mail advertisement – it commands the target cell to react in a precise way to the arrival of the message."

pp.102-103


In the following analogy the mapping is very clear:

"One gene occupies one region of a chromosome containing many genes, much like one song occupies one region of a music tape containing many songs overall."

p.7

Song on music tape is to gene on chromosome


For an analogy to be explicit the mapping between target and analogue must be clear, as here, where Scott spells out how workstations on a production line map onto enzymes,

"The production line analogy is a very good one. The individual 'work stations' are the enzymes, and at these molecular work stations various chemical components are brought together and fashioned into some new component of product. The product of one enzyme can then pass down the line, to become the substrate of the next enzyme, and so on until the pathway is complete."

p.147

Some analogies offer a fairly basic mapping between relatively simple systems:

"If there is lots of A around in the cell, for example, then the rate at which A tends to meet up with enzyme EAB will obviously increase (just as an increase in the number of people you happen to know entering a fairground will increase the chances of you meeting up with someone you know)."

p.150
fairgroundcell
people at a fairgroundmolecules in the cytosol
you at the fairgrounda specific enzyme in the cytosol
people entering the fairground that know you personallymolecules of a type that binds to the specific enzyme
chance of you meeting someone you knowrate of collision between enzyme and the specific molecules it binds to

An analogy with a vote counting machine


Scott compares a nerve cell, the activity of each of which is influenced by a large number of 'input' signals, to a ballot counting machine,

"…most nerve cells receive inputs, in the form of neurotransmitters, from many different cells, so the 'decision' about whether or not the cell should fire depends on the net effect of all the different inputs, some of which will be excitatory, and some inhibitory, with the pattern of input perhaps varying all the time.

So any single nerve cells acts like an [sic] tiny automatic ballot machine, assessing the number of 'yes' and 'no' votes entering it at any one time and either firing or not firing depending on which type of vote predominates at any one time.

…Nerve cells receive electrochemical signals from other cells, and each signal represents a 'yes' or a 'no' vote in an election to determine whether the cell should fire."

pp.166-8


Turnstiles in Alewife station, image from Wikimedia Commons (GNU Free Documentation License)

Scott uses the image of a turnstile, a device that blocks entry unless triggered by a coin or ticket, and which automatically locks once a person has passed through, as a familiar analogue for an ion channel into a cell. The mapping is not spelt out in detail, but should be clear to anyone familiar with turnstiles of this kind,

"When it is sitting in a polarised membrane, this protein is in a conformational state in which it is unable to allow any ions to pass through the cell. When the membrane around it becomes depolarised, however, the protein undergoes a conformational change which causes it briefly to form a channel through which Na+ ions can pass. The channel only remains open for a short time, however, since the conformational upheaval [sic] of the protein continues until it adopts a new conformation in which the passage of Na+ ions is once again blocked. The overall effect of this conformational change is a bit like the operation of a turnstile – it moves from one conformation which prevents anything from passing, into a new conformation which also prevents anything from passing, but in the process of changing from one conformation to another there is a brief period during which a channel allowing passage through is opened up."

p.163

An analogy between a sodium ion channel in a membrane, and a turnstile of the kind sometimes used to give entry to a sporting ground or transport system.


Whether there is an absolute distinction between metaphors/similes and analogies in practice can be debated. So, for example, Scott goes beyond simply suggesting that the nanoscale of molecules is like a mixing bowl, but does not offer a simple mapping between systems,

"Thermal motion turns much of the chemical microworld into a 'molecular mixing bowl' … So the solution of the cytosol acts as an all pervading chemical sea in which many of the chemicals of life are mixed together by random thermal motion as if in a molecular mixing bowl."

p.40

We could see the ocean as a simile (marked by 'acts as an') and the mixing bowl as another (marked by the scare quotes, and then 'as if in a') – but there is a partial mapping with a macroscopic mixing bowl: we are told (i) what is mixed, and (ii) the agent that mixes at the molecular scale, but it is assumed that we already know these should map to (i) the ingredients of a dish being mixed by (ii) a cook.

In places, then, Scott seems to rely on his readers to map features of analogies themselves. For example, in the following (where "The chaos of a large department store on Christmas Eve, or during the January sales, is a reasonable analogy [for the cell, as] there is order and logic within a scene of frantic and often seemingly chaotic activity"), the general point about scale was well made, but (for this reader, at least) the precise mapping remained obscure,

"The frantic chaos of chemistry proceeds too fast and too remotely for us to follow it without great difficulty. We are in the position of airborne observers who see trainloads of shoppers flowing into the city on Christmas Eve morning, and trainloads of the same shoppers laden with purchases flowing back to the suburbs in the evening. From the air we can see the overall effect of suburban shoppers 'reacting' with the shops full of goods, but we remain unaware of the hidden random chaos which allows the reaction to proceed!

p.44

Perhaps other readers immediately see this, but I am not sure what the shoppers are: molecules? but then they are unchanged by reactions? As they flow together into and out of the city (cell?) they could be ions in a nerve cell, but then what are the purchases they carry away (and have they paid for them in energy)? What are the trains? (ion channels? ribosomes?) What are the shops (mitochondria)? Perhaps I am trying to over-interpret an image that is not meant to be specific – but elsewhere Scott seems to have designed his analogies carefully to have specific mappings.


A reference to "a cofactor called 'heme' which actually acts as the chemical vessel on which the oxygen is carried"seems, by itself to be a metaphor, but when read in the context of text that precedes it, seems part of a more developed analogy:

"The most obvious system of bulk transport in the human body is the blood, which flows through our arteries, capillaries and veins like a 'river of life', bringing chemical raw materials (oxygen, water and food) to every cell of the body, and taking waste products away. Within this bulk system, however, the actual job of transporting specific substances is sometimes performed by small 'freighters' such as individual blood cells and even individual protein molecules."

p.98

The precise form of transport acting as an analogue shifts when the discussion shifts from the transport process itself to what I might refer to as the loading and unloading of the 'freighter',

"So the binding of one oxygen molecule to one subunit of an empty [sic] haemoglobin complex greatly encourages the binding of oxygen to the other three available sites. This makes the multi-subunit haemoglobin complex a bit like a four-seater car in which the first person into the car unlocks the door for another three passengers. The crucial step in loading the car is getting the first person in, after which the first person helps all the others to climb aboard.

An opposite effect occurs when loaded haemoglobin reaches a tissue in need of oxygen: the loss of one oxygen molecule from one subunit causes a conformational change in the complex which allows the other three oxygen molecules to be off-loaded much more readily. A suitable analogy to this would be an unstable four-man boat, since, if one man jumps overboard, he may rock the boat sufficiently to make the other three fall out!"

pp.100-101

Why is a child like an office block?

Child is to zygote as office building is to light bulb? (Images from Pixabay)


Scott compares the development of the child from a single cell with a self-assembling office block,

"When a human egg cell begins to divide and create a newborn child it achieves an enlargement equivalent to a lightbulb giving rise to a massive office block 250 metres high; which then, over the next 15 years or so, stretches and widens to an astounding 1,000 metres in height and nearly 250 metres across. In the 'office block' that is you all the plumbing, heating, lighting, telecommunication and ventilation systems were assembled automatically and work together smoothly to sustain a bewildering diversity of very different 'suites' and 'offices'.

p.4

Scott later revisits his office analogy, though now the building is not the growing organism, but just a single cell (one of the 'offices' from the earlier analogy?),

"Cells are not stable and unchanging structures like office blocks. Instead, most parts of a cell are in a state of continual demolition and renewal, known as 'metabolic turnover'. Imagine an office block in which a large team of builders is constantly moving through, knocking down existing walls and using the bricks to build up new ones; ripping apart the furniture and then reassembling it into new forms; peeling off wallpaper, then using it as the raw material to produce new paper which is then put back up again; and all the time some new materials are arriving through the door, to assist in the continual rebuilding, while some of the older materials are constantly being discarded out of the windows. The living cells is in a very similar siltation, with teams of enzymes constantly ripping down the structure of the cell while other teams of enzymes build it up.

Life in the office block imagined earlier might sometimes be a little difficult and chaotic, but at least when change was required it could be brought about quickly, since the necessary tradesmen and supplies would always be on hand; and any mistakes made during the building process could always quickly be put right. Metabolic turnover bestows similar advantages on the living cell."

pp.118-119

The reference to 'teams' of enzymes is another subtle anthropomorphic metaphor. Those in a team are conscious of team membership and coordinate their activities towards a common goal – or at least that is the ideal. Enzymes may seem to be working together, but that is a just a slant we put on processes. Presumably the two sets of teams of enzymes (a catabolic set and an anabolic set) map onto the large team of builders – albeit the enzymes seem to be organised into more specialised working teams than the builders.


Some of Scott's prose, then, combines different ways of making the science familiar, as when he tells the reader

"Water, in other words, is the solvent of life, meaning that it is the liquid which permeates into all the nooks and crannies of the cell and in which all the chemical reactions of life take place. There are various small regions of the cell from which water is excluded, especially within the interior of some large molecules; but the chemistry of life largely proceeds in an ocean of water. It is not a clear ocean – thousands of different types of chemical are dissolved in it, and it is criss-crossed by a dense tangle of giant molecules which form 'fibres' or 'cables' or 'scaffolding' throughout the cell. Swimming through the cell 'cytosol' (the internal 'fluid' of the cell) would be like struggling through a dense underwater forest of seaweed, or through a thick paste or jelly, rather than darting though clear ocean."

p.6

On the molecular level, the water inside of a cell is "an ocean" (a metaphor), which can access the "nooks and crannies of the cell" (a metaphor). The ocean is interrupted by "giant molecules which form 'fibres' or 'cables' or 'scaffolding'…" These terms seem to be used as similes, marked by the use of inverted commas, although Scott also uses this convention to introduce new terms – 'cytosol' is not a simile. Presumably 'fluid' (marked by inverted commas) is being used as a simile as the cytosol is not a pure liquid, but a complex solution.

[The quote implies that "It is not a clear ocean – [as/because] thousands of different types of chemical are dissolved in it", but dissolved solutes would not stop a solution being clear: the actual ocean is very salty, with many different types of ions dissolved in it, but can be clear. Lack of transparency would be due to material suspended, but not actually dissolved, in the water.]

If this is a metaphorical ocean, it is an ocean that would be difficult to swim in, as the tangle of giant molecules is analogous to "a dense underwater forest of seaweed" so it would be like swimming trough "a thick paste or jelly".


The water cycle of life

Perhaps the pièce de résistance in terms of an analogy adopted in the book was the use of a comparison between metabolism and the water cycle,

"I have drawn an analogy between the creation of living things containing many high energy chemicals (i.e. those in which the electromagnetic force is resisted much more than it could be), and the raising water vapour from the sea into the sky. We can continue with this analogy as we look deeper into the energetics of the living cell."

pp.126-127

Scott does indeed develop the analogy, as can be seen from the quotations parsed into the table below:

target conceptanalogue
"…thermodynamic law determines that the energy of the sun must disperse out to the earth and raise the energy level of the things that are found there.
The raw materials of life are some of the things that are found there, and the energy from the sun raises these raw materials up into the higher energy levels associated with organised life,
just as
it raises water up into the sky and deposits some of it in tidy little mountain pools."
"…I have drawn an analogy between
the creation of living things containing many high energy chemicals…
and
the raising water vapour from the sea into the sky."
"The raising of water to the skies is not an isolated and irreversible event, but part of a cycle in which the water eventually loses the energy gained from the sun and returns to the earth as rain, only to absorb some more energy and be lifted up once more, and so on…
Similarly, of course,
the creation of a living being such as yourself is not an isolated and irreversible event, but is part of a cycle of life and death, of growth and decay…"
"If we look inside the chemical mechanisms of the living cell we find that they can harness the energy available in the environment, most of which ultimately comes from the sun,
in a manner similar to
the [person] who has built a water wheel, a pump, a reservoir and many secondary wheels used to power many different tasks…."
"In living things
the roles of
the water-wheels and pumps
are played by
various systems of proteins and membranes,
whilst
the the most common immediate energy reservoir is a chemical known as 'adenosine triphosphate' (ATP).
ATP is the cell's
equivalent of
water stored in a high level reservoir or a tank
because
it takes an energy input to make it, while energy is given out when it breaks apart into ADP and phosphate."
"The considerable resistance to the electromagnetic force embodied in the structure of ATP imposes a strain on the ATP molecule.
It is like
the compressed spring of a jack-in-the-box just waiting to be released;
and when it is released in some appropriate chemical reaction, then the energy level of the molecule falls as it splits up into ADP and phosphate.
Just as the force of water falling from a high gravitational energy level to a lower one can be harnessed to make various energy-requiring processes proceed,
so
the force of an ATP molecule falling from a high chemical energy level to a lower one can be harnessed to make a wide variety of energy-requiring chemical reactions proceed…"
"The ATP manufacturing enzyme
is closely analogous to
a water-wheel,
for
as the hydrogen ions are allowed to flow back through the enzyme,
just as
water flows over a water-wheel,
so
the ensuing chemical reactions 'lift up' the precursors of ATP into their high energy ATP state."
"The principle of such energy coupling
can be understood by the simple analogy of
the water flowing downhill over a water-wheel, and thus serving to turn the wheel and, for example, raise some weight from the ground using a pulley."
"These proteins are the molecular machines
which take the place of
the water-wheels and ropes and pulleys which can couple the falling of water down a mountainside to the lifting of some weight beside the stream"
An extended analogy between two systems

Whether this should be seen as one extended analogy, or more strictly as several, somewhat distinct but related, comparisons is moot, as becomes clear when trying to map out the different features. My best attempt involved some duplication and ambiguity. (Hint to all designers of teaching analogies – map them out as parallel concept maps to help you visualise and keep track of the points being made.)


An analogy (or set of analogies) between biological/biochemical and physical systems


Visualisation – mental simulation

Teaching analogies usually link to what is expected to be (for the members of the audience) a familiar situation, experience, or phenomenon. Readers will be familiar with an office block, or swimming in water.

However, it is also possible for the science communicator to set up an analogy based on a scenario which is unlikely to be familiar, but which can be readily imagined by the reader.

"To appreciate the power of random motion to bring about seemingly purposeful change, imagine a room full of blindfolded people all instructed to walk about at random 'bouncing' off the walls and one another. Imagine also that they have been told to stop moving only when they bump into a small picture hanging from a wall. Finally, suppose that all the pictures are hung in a second room, linked to the room full of people by a narrow open doorway…"

p.40

Few if any readers will have been familiar with this scenario, but the components – groups of people in rooms, blindfolding, adjoining rooms, pictures hung on walls – are all familiar and there is nothing inherently problematic about the scenario even it does not seem very likely. So, here the reader has to build up the analogy from a number of familiar but distinct images.

So, we might consider this a kind of 'gedankenexperiment' or thought experiment – the reader is prompted to consider what would happen if…(and then to transfer what would happen to the target system at the molecular scale). Perhaps some readers immediately 'see' (intuit) what happens in this situation, but otherwise they can 'run' a mental simulation to find out – a technique scientists themselves have used (if probably not regarding blindfolded people in picture galleries).

Analogies only reflect some aspects of the target being compared. The features that map unproblematically are known as the positive analogy, but there is usually a negative analogy as well: features that do not match, and so which would be misleading if carried across. Realistically, the negative analogy will usually have more content than the positive analogy, although much of the negative analogy will be so obviously irrelevant that it is unlikely to confuse anyone.

So, for example, in the analogy the blindfolded people will be wearing clothes, may exchange apologies (or curses) on bumping into each other, and will likely end up bruised – and human nature being what it is, some may cheat by sneaking a look past the edge of the blindfold – but no reader is likely to think these are features that transfer across to the target! Perhaps, however, a reader might wonder if the molecules, like the blindfolded people, are drawing on a source of energy to keep up the activity, and would tire eventually?

There are some other potentially more problematic aspects of the negative analogy. In the thought experiment, the people have been given instructions about what to do, and when to stop, and are acting deliberately. These features do not transfer across, but a reader might not realise this, and could therefore understand the analogy anthropomorphically. It is in situations like this where the teacher can seek feedback on how the analogy is being interpreted (that is, use informal formative assessment), but an author of a book loses control once the manuscript is completed.

Molecular mechanisms made familiar?

There is nothing unusual in Scott's use of metaphor, simile and analogy in seeking to help readers understand abstract scientific ideas. This is an approach common to a good deal of science communication, within and beyond formal teaching. Vital Principles offers many examples, but such devices are common in books seeking to explain science.

I did raise two questions about these techniques above. How do we know if these comparisons are effective in communicating the science? To find out, we would need to talk to readers and question them about their interpretations of the text.

In formal science teaching the focus of such research would likely be the extent to which the presentation supported a learner in acquiring a canonical understanding of the science.

However, as I suggested above, if such research concerned popular science books, we might ask whether the purpose of such books is to teach science or satisfy reader interest. Thus, above, I distinguished an objective and a subjective aspect. If a reader selected a book purely for interest, and is satisfied by what they have read – it made sense to them, and satisfied their curiosity – then does it matter if they may have not understood canonically?

When I read such texts, I wonder about both how a general readership responds to the comparisons offered by authors to make the unfamiliar familiar, and what sense the readers come away with of the science. I guess to some extent popular science authors at least get some level of feedback on the former question – if readers come back for their other titles, then they must be doing something right.

I thought Scott showed a good deal of ingenuity and craft in setting out an account of a challenging and complex area of science – but I would love to know how his different readers interpreted some of his comparisons.


Work cited:

Notes:

1 I have picked up a good many 'popular science books' over the years, but quite a few of them got put on the shelves till I had time to engage with them in any depth. Other things usually got in the way – lesson/lecture preparation being the most demanding imperative for soaking up time over my 'working' life. Retirement has finally allowed me to start going through the shelves…


2 In the English context, perhaps elsewhere, the textbook is now also often expected to not only cover the right content, but follow the examination board's line on the level of treatment, even to the degree of what is acceptable phrasing. Indeed, there are now textbooks associated with the different exam board syllabuses for the 'same' qualification (e.g., A level Chemistry). This seems very unhealthy, and come the revolution


3 The model I am referring to here is the mental model in the teacher's mind of the learner or reader – the background knowledge they have available, their existing level of understanding, the sophistication of their thinking, the range of everyday references they are familiar with which might be useful in making comparisons, their concentration span for dealing with new material or complex language …

If we think of teaching-learning as a system, many system failure (failures of students to understand teaching as intended) can be considered to be due to a mismatch – the teacher's mental model is inaccurate in ways that leads to non-optimal choices in presenting material (Taber, 2001 [Download article]).

This is the basis of the 'learning doctor' approach.

Read about Science learning doctors


4 This is the crux of the so called 'constructivist' perspective on teaching science – a perspective discussed in depth elsewhere on the site.

Read about constructivism


5 There was little in the book I really would have argued with. However, there were a few questionable statements:


"Yet this apparent miracle is completed thousands of times each day throughout the world [in humans], and similar miracles create all manner of simpler creatures, from elephants and birds and flies to bacteria and flowers and mighty oaks."

p.5

This statement seemed to reflect the long-lasting notion of nature as a 'great chain of being' with humans (in the middle of the chain, below a vast range of angelic forms, but) top of the natural world. Bacteria are simpler than humans, I would acknowledge; but I am less sure about flies; even less sure about birds; and question considering trees and other flowering plants, or elephants, as (biologically) simpler than us. This seems an anthropocentric (human-centred), rather than a scientific, take.


"…the periodic table… lists the 92 naturally occurring atoms (plus a few man-made ones) which are the basic raw materials of chemistry…"

p.19

There are clearly more than 92 naturally occurring atoms in the universe. I believe we think there are 90 naturally occurring elements. That is 90 "naturally occurring [kinds of, in the specific sense of proton number] atoms".


Similarly, "a 'compound' is any chemical [sic] composed of two or more atoms chemically bonded together" (pp.29-30) would imply that H2, C60, N2, O2, F2, P4, S8, Cl2, etc are all compounds (when these are elements, not compounds).


Another slightly questionable suggestion was that

"…electrons appear to surround the atomic nucleus, but in a way that allows them to dart to and fro in a seemingly chaotic manner within a particular region of space."

p.21

The notion of electrons darting back and forth does not really reflect the scientific model, but the orbital/quantum model of the atom is subtle and difficult to explain, and was not needed at the level of the description being presented.


A more obvious error was that

"…'heat' is just a measure of the kinetic energy with which particles of matter are moving…"

p.26

In physics, the temperature of a material is considered to reflect the average kinetic energy of the particles (e.g., molecules). But heat is a distinct concept from temperature. Heat is the energy transferred between samples of matter, due to a difference in temperature. So, when Scott writes

"We all know that heat energy moves inevitably from hot places to cold places, and that it will never spontaneously move in the opposite direction."

p.32

this could be seen as a tautology: like saying that imports always come into the county rather than leave – because of how imports are defined.

Although heat and temperature are related concepts, confusing or conflating them is a common alternative conception found among students. Confusing heat with temperature is like confusing a payment into your bank account with the account balance.

Moreover, Scott uses the wrong term when writes,

"[The molecules of?] Chemicals come into contact with one another because they are all constantly moving with the energy we call heat."

p.191

This internal energy that substances have due to the inherent motion of their particles is not heat – it is present even when there is a perfectly uniform temperature throughout a sample (and so no heating going on).


Scott tells readers that "Another name for … a voltage difference is a 'potential difference'…" (p.162) but the term voltage (not voltage difference) normally refers to a potential difference, p.d.. (So, the term voltage difference implies a difference between potential differences, not a difference in potential. If you had one battery with a p.d. across its terminals of 6.0V, and another with a p.d. across its terminals of 4.5V, you could say the 'voltage difference' between the batteries was 1.5V.)


A common alternative conception which Scott seems to share, or at least is happy to reinforce, is the 'fairy tale'* of how ionic bonding results from the transfer of an electron from a metal atom to a neutral non-metal atom,

"When sodium atoms react with chlorine atoms electrons are actually transferred from one atom to the other (see figure [which shows electron transfer from one atom to another]). One electron which is relatively loosely held by a sodium atom can move over to become attached to a chlorine atom."

p.30

This describes a chemically very unlikely scenario (neither sodium nor chlorine are found in the atomic state under normal conditions on earth), and if a sodium atom were to somehow collide with a chlorine atom, the process Scott describes would be thermodynamically non-viable – it requires too much energy to remove even the outermost 'relatively loosely held' electron from the neutral sodium atom. Perhaps this is why in the school laboratory NaCl tends to be prepared from solutions that already contain the sodium ions [NaOH(aq)] and the chloride ions [HCl(aq)].

* For example, read 'A tangible user interface for teaching fairy tales about chemical bonding'

It is hard to be too critical of Scott here, as this account is found in many chemistry text books (and I have even seen it expected in public examinations) although from a scientific point of view, it is a nonsense. That many learners come to think that ionic bonding is due to (or even, 'is') a process of electron transfer is surely a pedagogic learning impediment (Taber, 1994) – a false idea that is commonly taught in school chemistry.

Read more about common misconceptions of ionic bonding


6 As the author of a paper called ' Mediating mental models of metals: acknowledging the priority of the learner's prior learning', I must confess to being somewhat partial to some decent alliteration.


7 Many scientists will believe there is a purpose underpinning the evolution of life on earth, and will see creation as the unfolding of a supernatural plan. (Some others will vehemently reject this. Others still will be agnostic.) However, natural science is concerned with providing natural explanations of the world in terms of natural mechanisms. Even if a scientist thinks things are the way they are because that is God's will, that would be inadmissible as a scientific argument, as it does not explain how things came about through natural processes.

Read more about science and religion


8 Teaching, or for that matter writing a science book, is informed by the teacher's/author's mental model of how the reader/listener will make sense of the text (see above). How they actually make sense of the text depends on the interpretive resources they have available, and bring to mind, and it is common for learners/readers not to interpret texts in the way intended – often they either do not make sense of the information, or make a different sense to that intended. A teacher who is a 'learning doctor' can seek to diagnose and treat these 'teaching-learning system failures' when they inevitably occur, but teachers can avoid a good many potential problems by being as explicit as possible and not relying on learners to spontaneously make intended associations with prior learning or cultural referents.

Read about being a learning doctor

As suggested above, authors have an even more challenging task as their readerships may have a diverse range of prior knowledge and other available interpretive resources (e.g., a popular television programme or pop star in one country may be unknown to readers from another); and the author cannot check they have been understood as intended, in the way a teacher usually can.


Was the stellar burp really a sneeze?

Pulling back the veil on an astronomical metaphor


Keith S. Taber


It seems a bloated star dimmed because it sneezed, and spewed out a burp.


'Pardon me!' (Image by Angeles Balaguer from Pixabay)

I was intrigued to notice a reference in Chemistry World to a 'stellar burp'.

"…the dimming of the red giant Betelgeuse that was observed in 2019…was later attributed to a 'stellar burp' emitting gas and dust which condensed and then obscured light from the star"

Motion, 2022

The author, Alice Motion, quoted astrophysics doctoral candidate and science communicator Kirsten Banks commenting that

"In recorded history…It's the first time we've ever seen this happen, a star going through a bit of a burp"

Kirsten Banks quoted in Chemistry World

although she went on to suggest that the Boorong people (an indigenous culture from an area of the Australian state Victoria) had long ago noticed a phenomena that became recorded in their oral traditions 1, which

"was actually the star Eta Carinae which went through a stellar burp, just like Betelgeuse did"

Kirsten Banks quoted in Chemistry World

Composite image (optical appearing as white; ultraviolet as cyan; X-rays as purple) of Eta Carinae,

Source: NASA


Clearly a star cannot burp in the way a person can, so I took this to be a metaphor, and wondered if this was a metaphor used in the original scientific report.

A clump and a veil

The original report (Montargès, et al, 2021) was from Nature, one of the most prestigious science research journals. It did not seem to have any mention of belching. This article reported that,

"From November 2019 to March 2020, Betelgeuse – the second-closest red supergiant to Earth (roughly 220 parsecs, or 724 light years, away) – experienced a historic dimming of its visible brightness…an event referred to as Betelgeuse's Great Dimming….Observations and modelling support a scenario in which a dust clump formed recently in the vicinity of the star, owing to a local temperature decrease in a cool patch that appeared on the photosphere."

Montargès, et al., 2012, p.365

So, the focus seemed to be not on any burping but a 'clump' of material partially obscuring the star. That material may well have arisen from the star. The paper in nature suggests that Betelgeuse may loose material through two mechanisms: both by a "smooth homogeneous radial outflow that consists mainly of gas", that is a steady and continuous process; but also "an episodic localised ejection of gas clumps where conditions are favourable for efficient dust formation while still close to the photosphere" – that is the occasional, irregular, 'burp' of material, that then condenses near the star. But the word used was not 'burp', but 'eject'.

A fleeting veil

Interestingly the title of the article referred to "A dusty veil shading Betelgeuse". The 'veil' (another metaphor) only seemed to occur in the title. There is an understandable temptation, even in scholarly work, to seek a title which catches attention – perhaps simplifying, alliterating (e.g., 'mediating mental models of metals') or seeking a strong image ('…a dusty veil shading…'). In this case, the paper authors clearly thought the metaphor did not need to be explained, and that readers would understand how it linked to the paper content without any explicit commentary.


WordFrequency in Nature article
clump(s)25 (excluding reference list)
eject(ed, etc.)4
veil1 (in title only)
burp0
blob0
There's no burping in Nature

The European Southern Observatory released a press release (sorry, a 'science release') about the work entitled 'Mystery of Betelgeuse's dip in brightness solved', that explained

"In their new study, published today in Nature, the team revealed that the mysterious dimming was caused by a dusty veil shading the star, which in turn was the result of a drop in temperature on Betelgeuse's stellar surface.

Betelgeuse's surface regularly changes as giant bubbles of gas move, shrink and swell within the star. The team concludes that some time before the Great Dimming, the star ejected a large gas bubble that moved away from it. When a patch of the surface cooled down shortly after, that temperature decrease was enough for the gas to condense into solid dust.

'We have directly witnessed the formation of so-called stardust,' says Montargès, whose study provides evidence that dust formation can occur very quickly and close to a star's surface. 'The dust expelled from cool evolved stars, such as the ejection we've just witnessed, could go on to become the building blocks of terrestrial planets and life', adds Emily Cannon, from KU Leuven, who was also involved in the study."

https://www.eso.org/public/news/eso2109/

So, again, references to ejection and a veil – but no burping.

Delayed burping

Despite this, the terminology of the star burping, seems to have been widely taken up in secondary sources, such as the article in Chemistry World

A New Scientist report suggested "Giant gas burp made Betelgeuse go dim" (Crane, 2021). On the website arsTECHNICA, Jennifer Ouellette wrote that "a cold spot and a stellar burp led to strange dimming of Betelgeuse".

On the newsite Gizmodo, George Dvorsky wrote a piece entitled "A dusty burp could explain mysterious dimming of supergiant star Betelgeuse". Whilst the term burp was only used in the title, Dvorsky was not shy of making other corporeal references,

"a gigantic dust cloud, which formed after hot, dense gases spewed out from the dying star. Viewed from Earth, this blanket of dust shielded the star's surface, making it appear dimmer from our perspective, according to the research, led by Andrea Dupree from the Centre for Astrophysics at Harvard & Smithsonian.

A red supergiant star, Betelgeuse is nearing the end of its life. It's poised to go supernova soon, by cosmological standards, though we can't be certain as to exactly when. So bloated is this ageing star that its diameter now measures 1.234 million kilometers, which means that if you placed Betelgeuse at the centre of our solar system, it would extend all the way to Jupiter's orbit."

The New York Times published an article (June 17, 2021) entitled "Betelgeuse Merely Burped, Astronomers Conclude", where author Dennis Overbye began his piece:

"Betelgeuse, to put it most politely, burped."

The New York Times

Overbye also reports the work from the Nature paper

"We have directly witnessed the formation of so-called stardust," Miguel Montargès, an astrophysicist at the Paris Observatory, said in a statement issued by the European Southern Observatory. He and Emily Cannon of Catholic University Leuven, in Belgium, were the leaders of an international team that studied Betelgeuse during the Great Dimming with the European Southern Observatory's Very Large Telescope on Cerro Paranal, in Chile.

Parts of the star, they found, were only one-tenth as bright as normal and markedly cooler than the rest of the surface, enabling the expelled blob to cool and condense into stardust. They reported their results on Wednesday in Nature."

The New York Times

So, instead of the clumps referred to in the Nature article as ejected, we now have an expelled blob (neither word appears in the nature article itself). Overbye also explains how this study followed up on earlier observations of the star

"Their new results would seem to bolster findings reported a year ago by Andrea Dupree of the Harvard-Smithsonian Center for Astrophysics and her colleagues, who detected an upwelling of material on Betelgeuse in the summer of 2019.

'We saw the material moving out through the chromosphere in the south in September to November 2019,', Dr. Dupree wrote in an email. She referred to the expulsion as 'a sneeze.'

The New York Times

'…material moving out through the chromosphere in the south…': Hubble space telescope images of Betelgeuse (Source: NASA) 2

Bodily functions and stellar processes

I remain unsure why, if the event was originally considered a sneeze, it became transformed into a burp. However the use of such descriptions is not so unusual. Metaphor is a common tool in science communication to help 'make the unfamiliar familiar' by describing something abstract or out-of-the-ordinary in more familiar terms.

Read about metaphors in science

Here, the body [sic] of the scientific report keeps to technical language although a metaphor (the dust cloud as a veil) is considered suitable for the title. It is only when the science communication shifts from the primary literature (intended for the science community) into more popular media aimed at a wider audience that the physical processes occurring in a star became described in terms of our bodily functions. So, in this case, it seems a bloated star dimmed because it sneezed, and spewed out a burp.


Coda

The astute reader may have also noticed that the New York Times article referred to Betelgeuse as an "ageing star" that is "nearing the end of its life": terms that imply a star is a living, and mortal, being. This might seem to be journalistic license, but the NASA website from which the sequence of Betelgeuse images above are taken also refers to the star as ageing (as well as being 'petulant' and 'injured').2 NASA employs scientifically qualified people, but its public websites are intended for a broad, general audience, perhaps explaining the anthropomorphic references.

Thus, we might understand references to stars as alive as being a metaphorical device used in communicating astronomical ideas to the general public. Yet, an examination of the scientific literature might instead suggest instead that astronomers DO consider stars to be alive. But, that is a topic for another piece.


Work cited:
  • Crane, L. (2021). Giant gas burp made Betelgeuse go dim. New Scientist, 250(3340), 22. doi:10.1016/S0262-4079(21)01094-0
  • Hamacher, D. W., & Frew, D. J. (2010). An aboriginal Australian record of the great eruption of Eta Carinae. Journal of Astronomical History and Heritage, 13(3), 220-234.
  • Montargès, M., Cannon, E., Lagadec, E., de Koter, A., Kervella, P., Sanchez-Bermudez, J., . . . Danchi, W. (2021). A dusty veil shading Betelgeuse during its Great Dimming. Nature, 594(7863), 365-368. doi:10.1038/s41586-021-03546-8
  • Motion, A. 2022, Space for more science. Astrophysics and Aboriginal astronomy on TikTok, Chemistry World, December 2022, p.15 (https://www.chemistryworld.com/opinion/space-for-more-science/4016585.article)

Notes

1 William Edward Stanbridge (1816-1894) was an Englishman who moved to Australia in 1841. He asked Boorong informants about their astronomy, and recorded their accounts. He presented a report to the Philosophical Institute of Victoria in 1857 and published two papers (Hamacher & Frew, 2010). The website Australian Indigenous Astronomy explains that

"The larger star of [of the binary system] Eta Car is unstable and undergoes occasional violent outbursts, where it sheds material from its outer shells, making it exceptionally bright.  During the 1840s, Eta Car went through such an outburst where it shed 20 solar masses of its outer shell and became the second brightest star in the night sky, after Sirius, before fading from view a few years later.  This event, commonly called a "supernova-impostor" event, has been deemed the "Great Eruption of Eta Carinae".  The remnant of this explosion is evident by the Homunculus Nebulae [see figure above – nebulae are anything that appears cloud-like to astronomical observation].  This identification shows that the Boorong had noted the sudden brightness of this star and incorporated it into their oral traditions."

Duane Hamacher

A paper in the Journal of Astronomical History and Heritage concludes that

"the Boorong people observed 𝜂 Carinae in the nineteenth century, which we identify using Stanbridge's description of its position in Robur Carolinum, its colour and brightness, its designation (966 Lac, implying it is associated with the Carina Nebula), and the relationship between stellar brightness and positions of characters in Boorong oral traditions. In other words, the nineteenth century outburst of 𝜂 Carinae was recognised by the Boorong and incorporated into their oral traditions"

Hamacher & Frew 2010, p.231

2 The images reproduced here are presented on a NASA website under the heading 'Hubble Sees Red Supergiant Star Betelgeuse Slowly Recovering After Blowing Its Top'. This is apparently not a metaphor as the site informs readers that"Betelgeuse quite literally blew its top in 2019". Betelgeuse is described as a "monster star", and its activity as "surprisingly petulant behaviour" and a "titanic convulsion in an ageing star", such that "Betelgeuse is now struggling to recover from this injury."

This seems rather anthropomorphic – petulance and struggle are surely concepts that refer to sentient deliberate actors in the world, not massive hot balls of gas. However, anthropomorphic narratives are often used to make scientific ideas accessible.

Read about anthropomorphism

The recovery (from 'injury') is described in terms of two similes,

"The star's interior convection cells, which drive the regular pulsation may be sloshing around like an imbalanced washing machine tub, Dupree suggests. … spectra imply that the outer layers may be back to normal, but the surface is still bouncing like a plate of gelatin dessert [jelly] as the photosphere rebuilds itself."

NASA Website

Read about science similes


Cells are buzzing cities that are balloons with harpoons

What can either wander door to door, or rush to respond; and when it arrives might touch, sniff, nip, rear up, stroke, seal, or kill?


Keith S. Taber


a science teacher would need to be more circumspect in throwing some of these metaphors out there, without then doing some work to transition from them to more technical, literal, and canonical accounts


BBC Radio 4's 'Start the week' programme is not a science programme, but tends to invite in guests (often authors of some kind) each week according to some common theme. This week there was a science theme and the episode was titled 'Building the Body, Opening the Heart', and was fascinating. It also offers something of a case study in how science gets communicated in the media.


Building the Body, Opening the Heart

The guests all had life-science backgrounds:

Their host was geneticist and broadcaster Adam Rutherford.

Communicating science through the media

As a science educator I listen to science programmes both to enhance and update my own science knowledge and understanding, but also to hear how experts present scientific ideas when communicating to a general audience. Although neither science popularisation nor the work of scientists in communicating to the public is entirely the same as formal teaching (for example,

  • there is no curriculum with specified target knowledge; and
  • the audiences
    • are not well-defined,
    • are usually much more diverse than found in classrooms, and
    • are free to leave at any point they lose interest or get a better offer),

they are, like teachers, seeking to inform and explain science.

Science communicators, whether professional journalists or scientists popularising their work, face similar challenges to science teachers in getting across often complex and abstract ideas; and, like them, need to make the unfamiliar familiar. Science teachers are taught about how they need to connect new material with the learners' prior knowledge and experiences if it is to make sense to the students. But successful broadcasters and popularisers also know they need to do this, using such tactics as simplification, modelling, metaphor and simile, analogy, teleology, anthropomorphism and narrative.

Perhaps one of the the biggest differences between science teaching and science communication in the media is the ultimate criterion of success. For science teachers this is (sadly) usually, primarily at least, whether students have understood the material, and will later recall it, sufficiently to demonstrate target knowledge in exams. The teacher may prefer to focus on whether students enjoy science, or develop good attitudes to science, or will consider working in science: but, even so, they are usually held to account for students' performance levels in high-stakes tests.

Science journalists and popularisers do not need to worry about that. Rather, they have to be sufficiently engaging for the audience to feel they are learning something of interest and understanding it. Of course, teachers certainly need to be engaging as well, but they cannot compromise what is taught, and how it is understood, in order to entertain.

With that in mind, I was fascinated at the range of ways the panel of guests communicated the science in this radio show. Much of the programme had a focus on cells – and these were described in a variety of ways.

Talking about cells

Dr Rutherford introduced cells as

  • "the basic building blocks of life on earth"; and observed that he had
  • "spent much of my life staring down microscopes at these funny, sort of mundane, unremarkable, gloopy balloons"; before suggesting that cells were
  • "actually really these incredible cities buzzing with activity".

Dr. Mukherjee noted that

"they're fantastical living machines" [where a cell is the] "smallest unit of life…and these units were built, as it were, part upon part like you would build a Lego kit"

Listeners were told how Robert Hooke named 'cells' after observing cork under the microscope because the material looked like a series of small rooms (like the cells where monks slept in monasteries). Hooke (1665) reported,

"I took a good clear piece of Cork, and with a Pen-knife sharpen'd as keen as a Razor, I cut a piece of it off, and…cut off from the former smooth surface an exceeding thin piece of it, and…I could exceeding plainly perceive it to be all perforated and porous, much like a Honey-comb, but that the pores of it were not regular; yet it was not unlike a Honey-comb in these particulars

…these pores, or cells, were not very deep, but consisted of a great many little Boxes, separated out of one continued long pore, by certain Diaphragms, as is visible by the Figure B, which represents a sight of those pores split the long-ways.

Robert Hooke

Hooke's drawing of the 'pores' or 'cells' in cork

Components of cells

Dr. Mukherjee described how

"In my book I sort of board the cell as though it's a spacecraft, you will see that it's in fact organised into rooms and there are byways and channels and of course all of these organelles which allow it to work."

We were told that "the cell has its own skeleton", and that the organelles included the mitochondria and nuclei ,

"[mitochondria] are the energy producing organelles, they make energy in most cells, our cells for instance, in human cells. In human cells there's a nucleus, which stores DNA, which is where all the genetic information is stored."


A cell that secretes antibodies which are like harpoons or missiles that it sends out to kill a pathogen?

(Images by by envandrare and OpenClipart-Vectors from Pixabay)


Immune cells

Rutherford moved the conversation onto the immune system, prompting 'Sid' that "There's a lovely phrase you use to describe T cells, which is door to door wanderers that can detect even the whiff of an invader". Dr. Mukherjee distinguished between the cells of the innate immune system,

"Those are usually the first responder cells. In humans they would be macrophages, and neutrophils and monocytes among them. These cells usually rush to the site of an injury, or an infection, and they try to kill the pathogen, or seal up the pathogen…"

and the cells of the adaptive system, such as B cells and T cells,

"The B cell is a cell that eventually becomes a plasma cell which secretes antibodies. Antibodies, they are like harpoons or missiles which the cell sends out to kill a pathogen…

[A T cell] goes around sniffing other cells, basically touching them and trying to find out whether they have been altered in some way, particularly if they are carrying inside them a virus or any other kind of pathogen, and if it finds this pathogen or a virus in your body, it is going to go and kill that virus or pathogen"


A cell that goes around sniffing other cells, touching them? 1
(Images by allinonemovie and OpenClipart-Vectors from Pixabay)

Cells of the heart

Another topic was the work of Professor Harding on the heart. She informed listeners that heart cells did not get replaced very quickly, so that typically when a person dies half of their heart cells had been there since birth! (That was something I had not realised. It is believed that this is related to how heart cells need to pulse in synchrony so that the whole organ functions as an effective pumping device – making long lasting cells that seldom need replacing more important than in many other tissues.)

At least, this relates to the cardiomyocytes – the cells that pulse when the heart beats (a pulse that can now be observed in single cells in vitro). Professor Harding described how in the heart tissue there are also other 'supporting' cells, such as "resident macrophages" (immune cells) as well as other cells moving around the cardiomyocytes. She describe her observations of the cells in Petri dishes,

"When you look at them in the dish it's incredible to see them interact. I've got a… video [of] cardiomyocytes in a dish. The cardiomyocytes pretty much just stay there and beat and don't do anything very much, and I had this on time lapse, and you could see cells moving around them. And so, in one case, the cell (I think it was a fibroblast, it looked like a fibroblast), it came and it palpated at the cardiomyocyte, and it nipped off bits of it, it sampled bits of the cardiomyocyte, and it just stroked it all the way round, and then it was, it seemed to like it a lot.

[In] another dish I had the same sort of cardiomyocyte, a very similar cell came in, it went up to the cardiomyocyte, it touched it, and as soon as it touched it, I can only describe it as it reared up and it had, little blobs appeared all over its surface, and it rushed off, literally rushed off, although it was time lapse so it was two minutes over 24 hours, so, it literally rushed off, so what had it found, why did one like it and the other one didn't?"

Making the unfamiliar, familiar

The snippets from the broadcast that I have reported above demonstrate a wide range of ways that the unfamiliar is made familiar by describing it in terms that a listener can relate to through their existing prior knowledge and experience. In these various examples the listener is left to carry across from the analogue features of the familiar (the city, the Lego bricks, human interactions, etc.) those that parallel features of the target concept – the cell. So, for example, the listener is assumed to appreciate that cells, unlike Lego bricks, are not built up through rigid, raised lumps that fit precisely in depressions on the next brick/cell. 2

Analogies with the familiar

Hooke's original label of the cell was based on a kind of analogy – an attempt to compare what we has seeing with something familiar: "pores, or cells…a great many little Boxes". He used the familiar simile of the honeycomb (something directly familiar to many more people in the seventeenth century when food was not subject to large-scale industrialised processing and packaging).

Other analogies, metaphors and similes abound. Cells are visually like "gloopy balloons", but functionally are "building blocks" (strictly a metaphor, albeit one that is used so often it has become treated as though a literal description) which can be conceptualised as being put together "like you would build a Lego kit" (a simile) although they are neither fixed, discrete blocks of a single material, nor organised by some external builder. They can be considered conceptually as the"smallest unit of life"(though philosophers argue about such descriptions and what counts as an individual in living systems).

The machine description ("fantastical living machines") reflects one metaphor very common in early modern science and cells as "incredible cities" is also a metaphor. Whether cells are literally machines is a matter of how we extend or limit our definition of machines: cells are certainly not actually cities, however, and calling them such is a way of drawing attention to the level of activity within each (often, apparently from observation, quite static) cell. B cells secrete antibodies, which the listener is old are like (a simile) harpoons or missiles – weapons.

Skeletons of the dead

Whether "the cell has its own skeleton" is a literal or metaphorical statement is arguable. It surely would have originally been a metaphoric description – there are structures in the cell which can be considered analogous to the skeleton of an organism. If such a metaphor is used widely enough, in time the term's scope expands to include its new use – and it becomes (what is called, metaphorically) a 'dead metaphor'.

Telling stories about cells

A narrative is used to help a listener imagine the cell at the scale of "a spacecraft". This is "organised into rooms and there are byways and channels" offering an analogy for the complex internal structure of a cell. Most people have never actually boarded a spacecraft, but they are ubiquitous in television and movie fiction, so a listener can certainly imagine what this might be like.


Endoplastic reticulum? (Still from Star Trek: The Motion Picture, Paramount Pictures, 1979)

Oversimplification?

The discussion of organelles illustrates how simplifications have to be made when introducing complex material. This always brings with it dangers of oversimplification that may impede further learning, or even encourage the development of alternative conceptions. So, the nucleus does not, strictly, 'store' "all the genetic information" in a cell (mitochondria carry their own genes for example).

More seriously, perhaps, mitochondria do not "make energy". 'More seriously' as the principle of conservation of energy is one of the most basic tenets of modern science and is considered a very strong candidate for a universal law. Children are often taught in school that energy cannot be created or destroyed. Science communication which is contrary to this basic curriculum science could confuse learners – or indeed members of the public seeking to understand debates about energy policy and sustainability.

Anthropomorphising cells

Cells are not only compared to inanimate entities like balloons, building bricks, cities and spaceships. They are also described in ways that make them seem like sentient agents – agents that have experiences, and conscious intentions, just as people do. So, some immune cells are metaphorical 'first responders' and just as emergency services workers they "rush to the site" of an incident. To rush is not just to move quickly, buy to deliberately do so. (By contrast, Paul McAuley refers to "innocent" amoeboid cells that collectively form into the plasmodium of a slime mould spending most of their lives"bumbling around by themselves" before they "get together". ) The immune cells act deliberately – they "try" to kill. Other immune cells "send out" metaphorical 'missiles' "to kill a pathogen". Again this language suggests deliberate action (i.e., to send out) and purpose.

That is, what is described is not just some evolved process, but something teleological: there is a purpose to sending out antibodies – it is a deliberate act with an aim in mind. This type of language is very common in biology – even referring to the 'function' of the heart or kidney or a reflex arc could be considered as misinterpreting the outcome of evolutionary developments. (The heart pumps blood through the vascular system, but referring to a function could suggest some sense of deliberate design.)

Not all cells are equal

I wonder how many readers noticed the reference above to 'supporting' cells in the heart. Professor Harding had said

"When you look inside the [heart] tissue there are many other cells [than cardiomyocytes] that are in there, supporting it, there are resident macrophages, I think we still don't know really what they are doing in there"

Why should some heart cells be seen as more important and others less so? Presumably because 'the function' of a heart is to beat, to pump, so clearly the cells that pulse are the stars, and the other cells that may be necessary but are not obviously pulsing just a supporting cast. (So, cardiomyocytes are considered heart cells, but macrophages in the same tissue are only cells that are found in the heart, "residents" – to use an analogy of my own, like migrants that have not been offered citizenship!)3

That is, there is a danger here that this way of thinking could bias research foci leading researchers to ignore something that may ultimately prove important. This is not fanciful, as it has happened before, in the case of the brain:

"Glial cells, consisting of microglia, astrocytes, and oligodendrocyte lineage cells as their major components, constitute a large fraction of the mammalian brain. Originally considered as purely non-functional glue for neurons, decades of research have highlighted the importance as well as further functions of glial cells."

Jäkel and Dimou, 2017
The lives of cells

Narrative is used again in relation to the immune cells: an infection is presented as a kind of emergency event which is addressed by special (human like) workers who protect the body by repelling or neutralising invaders. "Sniffing" is surely an anthropomorphic metaphor, as cells do not actually sniff (they may detect diffusing substances, but do not actively inhale them). Even "touching" is surely an anthropomorphism. When we say two objects are 'touching' we mean they are in contact, as we touch things by contact. But touching is sensing, not simply adjacency.

If that seems to be stretching my argument too far, to refer to immune cells "trying to find out…" is to use language suggesting an epistemic agent that can not only behave deliberately, but which is able to acquire knowledge. A cell can only "find" an infectious agent if it is (i.e., deliberately) looking for something. These metaphors are very effective in building up a narrative for the listener. Such a narrative adopts familiar 'schemata', recognisable patterns – the listener is aware of emergency workers speeding to the scene of an incident and trying to put out a fire or seeking to diagnose a medical issue. By fitting new information into a pattern that is familiar to the audience, technical and abstract ideas are not only made easier to understand, but more likely to be recalled later.

Again, an anthropomorphic narrative is used to describe interactions between heart cells. So, a fibroblast that "palpates at" a cardiomyocyte seems to be displaying deliberate behaviour: if "nipping" might be heard as some kind of automatic action – "sampling" and "stroking" surely seem to be deliberate behaviour. A cell that "came in, it went up [to another]" seems to be acting deliberately. "Rearing up" certainly brings to mind a sentient being, like a dog or a horse. Did the cell actually 'rear up'? It clearly gave that impression to Professor Harding – that was the best way, indeed the "only" way, she had to communicate what she saw.

Again we have cells "rushing" around. Or do we? The cell that had reared up, "rushed off". Actually, it appeared to "rush" when the highly magnified footage was played at 720 times the speed of the actual events. Despite acknowledging this extreme acceleration of the activity, the impression was so strong that Professor Harding felt justified in claiming the cell "literally rushed off, although it was time lapse so it was two minutes over 24 hours, so, it literally rushed off…". Whatever it did, that looked like rushing with the distortion of time-lapse viewing, it certainly did not literally rush anywhere.

But the narrative helps motivate a very interesting question, which is why the two superficially similar cells 'behaved' ('reacted', 'responded' – it is actually difficult to find completely neutral language) so differently when in contact with a cardiomyocyte. In more anthropomorphic terms: what had these cells "found, why did one like it and the other one didn't?"

Literally speaking?

Metaphorical language is ubiquitous as we have to build all our abstract ideas (and science has plenty of those) in terms of what we can experience and make sense of. This is an iterative process. We start with what is immediately available in experience, extend metaphorically to form new concepts, and in time, once those have "settled in" and "taken root" and "firmed up" (so to speak!) they can then be themselves borrowed as the foundation for new concepts. This is true both in how the individual learns (according to constructivism) and how humanity has developed culture and extended language.

So, should science communicators (whether scientists themselves, journalists or teachers) try to limit themselves to literal language?

Even if this were possible, it would put aside some of our strongest tools for 'making the unfamiliar familiar' (to broadcast audiences, to the public, to learners in formal education). However these devices also bring risks that the initial presentations (with their simplifications and metaphors and analogies and anthropomorphic narratives…) not only engage listeners but can also come to be understood as the scientific account. That is is not an imagined risk is shown by the vast numbers of learners who think atoms want to fill their shells with octets of electrons, and so act accordingly – and think this because they believe it is what they have been taught.

Does it matter if listeners think the simplification, the analogy, the metaphor, the humanising story,… is the scientific account? Perhaps usually not in the case of the audience listening to a radio show or watching a documentary out of interest.

In education it does matter, as often learners are often expected to progress beyond these introductory accounts in their thinking, and teachers' models and metaphors and stories are only meant as a starting point in building up a formal understanding. The teacher has to first establish some kind of anchor point in the students' existing understandings and experiences, but then mould this towards the target knowledge set out in the curriculum (which is often a simplified account of canonical knowledge) before the metaphor or image or story becomes firmed-up in the learners' minds as 'the' scientific account.

'Building the Body, Opening the Heart' was a good listen, and a very informative and entertaining episode that covered a lot of ideas. It certainly included some good comparisons that science teachers might borrow. But I think in a formal educational context a science teacher would need to be more circumspect in throwing some of these metaphors out there, without then doing some work to transition from them to more technical, literal, and canonical accounts.


Read about science analogies

Read about science metaphors

Read about science similes

Read about anthropomorphism

Read about teleology


Work cited:


Notes:

1 The right hand image portrays a mine, a weapon that is used at sea to damage and destroy (surface or submarine) boats. The mine is also triggered by contact ('touch').


2 That is, in an analogy there are positive and negative aspects: there are ways in which the analogue IS like the target, and ways in which the analogue is NOT like the target. Using an analogy in communication relies on the right features being mapped from the familiar analogue to the unfamiliar target being introduced. In teaching it is important to be explicit about this, or inappropriate transfers may be made: e.g., the atom is a tiny solar system so it is held together by gravity (Taber, 2013).


3 It may be a pure coincidence in relation to the choice of term 'resident' here, but in medicine 'residents' have not yet fully qualified as specialist physicians or surgeons, and so are on placement and/or under supervision, rather than having permanent status in a hospital faculty.


We didn't start the fire (it was the virus)

A simile for viral infection

Keith S. Taber

Could an oral Covid-19 treatment be available soon?

There was an item on the BBC radio programme/podcast 'Science in Action' (23rd September 2021) about anti-viral agents being used in response to the COVID-19 pandemic: 'Could an oral Covid-19 treatment be available soon?'

Science in Action – 23/09/2021

In discussing early trials of a new potential treatment, Molnupiravir 1, Daria Hazuda (Vice President of Infectious Disease and Vaccines at Merck Research Labs and Chief Scientific Officer of MRL Cambridge) made the point that in viral infections the virus may trigger an immune response which is responsible for aspects of the illness, and which may continue even when there is no longer active virus present. As part of her interview comments she said:

"But even after someone is infected, the host actually mounts, for all these [respiratory] viruses, a really dramatic immune and inflammatory response. So it sort of lights a fire. And even when the virus stops replicating, you know that fire continues to burn, and in a lot of cases that's what lands people in the hospital. And so you want to prevent the virus from igniting that fire, that is what really ends up causing a huge amount of damage to the patient. …

the greatest benefit [of the antiviral drug being tested] is in the outpatient setting before that fire gets ignited."

Daria Hazuda being interviewed on 'Science in Action'

A scientific simile

Science communicators, such as teachers, but also scientists and journalists presenting science in the public media, often use techniques to 'make the unfamiliar familiar', to get across abstract or difficult ideas in ways that their audience can relate to.

These techniques can include analogies, metaphors and similes. Here Dr Hazuda used an analogy between the damage to tissue that can occur in disease, and the damage a fire can do. In particular, she was suggesting that the virus may be seen as like something which ignites a fire (such as a match or a spark) but which is not needed to keep the fire going once it had taken hold.

She introduced this idea by suggesting that the virus "sort of lights a fire". This can be considered a simile, which is a figure of speech which is a kind of explicit comparison where one thing is said to be like or similar to another.2 Dr Hazuda did not suggest that the virus actually lights a fire, but rather it has an effect which can be considered somewhat like ('sort of') igniting a fire.

"We didn't start the fire
It was always burning, since the world's been turning
We didn't start the fire
No, we didn't light it, but we tried to fight it"

Billy Joel

Viruses triggering long term disease

The symptoms we experience when ill can be the results of our immune system reacting to illness, rather than the direct effect of the disease causing agent. That does not mean the disease itself would not harm us (infectious agents may be destroying cells which would not be obvious until extensive damage was done), but that in some conditions what we notice – perhaps sneezing, coughing, a raised temperature – is due to the immune response.

The immediate context of the Science in Action interview was the current COVID-19 pandemic caused by infection with the SARS-CoV-2 virus. However, the idea that a viral infection may trigger ('ignite') a longer term immune response (the 'fire') is not new with COVID. The syndrome sometimes known as chronic fatigue syndrome has unknown cause(s), but viruses are among the suspects. Viruses have been suspected as being a possible trigger (if perhaps in combination with other factors) in a range of autoimmune conditions. In autoimmune conditions the mechanisms that usually protect a person from infectious agents such as (some) bacteria and viruses attack and destroy the person's own cells leading to inflammation and potentially serious tissue damage.

People might commonly say that the immune system is 'meant' or 'intended' to protect us from diseases and that it sometimes 'goes wrong' leading to autoimmune disease – but strictly this is not a scientific way of thinking. The immune system has no purpose as such (this would be 'teleological' thinking), but has just evolved in ways such that it has on balance increased fitness.

From that perspective, it might not seem so strange that our immune systems are sometimes insufficient to protect us from harm, and yet can also sometimes be over-sensitive and start doing damage – as that surely is what we might expect if evolution has (through natural selection) led to a system which has tended on the whole to be protective.

The admirable HLA-B27?

"HLA B27 plays an admirable, perhaps outstanding role in the immune response to viruses, however, it is also directly involved in the pathogenesis of the spondyloarthropathies"

Bowness, 2002: 866

My late wife Philippa was diagnosed with a complex autoimmune condition – she was told that she had atypical Wegener's granulomatosis (a disease now usually called Granulomatosis with polyangiitis 2), a form of vasculitis (a disease leading to inflammation in the blood vessels), and that she might have been genetically susceptible to autoimmune diseases because she produced a particular type of human leukocyte antigen, HLA-B27. HLA is an important component of human immune systems, but the precise antigens a person produces varies, depending on their genes (just as we all have blood but people can be assigned into different blood groups). It was also suggested to her that an otherwise minor infection may have acted as a trigger in setting off the autoimmune problems.

Medicine today has some effective agents such as steroids that help 'dampen down' the 'fires' that damage tissues in autoimmune diseases. But these conditions can be very serious. Fifty years ago, most people found to have Wegener's granulomatosis were dead from that damage within a year of their diagnosis.

HLA-B27 is only found in a minority of people in most populations and is associated with a higher prevalence of certain immune conditions such as ankylosing spondylitis (an inflammatory condition especially affecting the spine), inflammatory bowel disease, and some forms of arthritis. It might seem odd that evolution has not led to the elimination of HGLA-B27 if it is associated with serious medical conditions. Yet, again, it may be that something which can make people prone to some conditions may also be better at protecting them from others.

People with HLA-B27 may be better at mounting an effective immune response to some viral infections (the fire is more readily ignited, we might say) and this might be enough of an advantage to balance its unfortunate role in autoimmune conditions. Over human history, HLA-B27 might have protected a great many people from dangerous infections, if also being responsible for a smaller number becoming very ill.

"HLA-B27 appears to excel at its natural function of binding and presenting viral peptide epitopes to cytotoxic T cells. We have suggested that HLA-B27 may, however, act as a 'double-edged sword'. Thus, certain features of its peptide binding ability or cell biology (perhaps those favouring excellent antiviral responses) might also lead to autoimmunity."

McMichael & Bowness, 2002: S157

That is, what makes this immune component so good at attacking certain viruses (as if the immune system had been doused in petrol so that the slightest spark might initiate a response) may also be responsible for its association with autoimmune diseases. HLA-B27 may (metaphorically) be the can of petrol that means that a viral spark starts not just a fire, but a conflagration.

Read about science in public discourse and the media

Read about making the unfamiliar familiar

Read about science similes

Read about teleological explanations


Work cited:

Bowness, P. (2002). HLA B27 in health and disease: a double‐edged sword? Rheumatology, 41(8), 857-868. doi:10.1093/rheumatology/41.8.857

McMichael, A., & Bowness, P. (2002). HLA-B27: natural function and pathogenic role in spondyloarthritis. Arthritis research, 4 Suppl 3(Suppl 3), S153-S158. doi:10.1186/ar571

Footnotes:

1: "the first oral, direct-acting antiviral shown to be highly effective at reducing nasopharyngeal SARS-CoV-2 infectious virus" according to a preprint reported at medRχiv). A preprint is a paper written to report scientific research but NOT yet tested through peer review and formally published, and so treated as reporting more provisional and uncertain findings than a peer-reviewed paper.

2 By comparison, a metaphor may be considered an implicit comparison presented as if an identity: e.g., the nucleus is the brain of the cell.

2. The disease was named after the German physician Friedrich Wegener who described the condition. After Wegener was identified as a Nazi and likely war criminal (suspected, but not convicted) it was decided to rename the disease.