Dissolving salt is a chemical change as you cannot turn it back

Dissolving salt is a chemical change as you cannot turn it back as it was before

Keith S. Taber

Sandra was a participant in the Understanding Science Project. When I interviewed Sandra about her science lessons in Y7 she told me "I've done changing state, burning, and we're doing electricity at the moment". I asked her about burning:

Well, tell me a bit about burning then. What's burning then?
It's just when something gets set on fire, and turns into ash, or – has a chemical change, whatever.
Has a chemical change: what's a chemical change?
It means something has changed into something else and you can't turn it back.
Oh I see. So burning would be an example of that.
Yeah.

So far this seemed to fit 'target knowledge'. However, Sandra suggested that dissolving would also be a chemical change. Dissolving is not normally considered a chemical change in school science, but a physical change, the distinction is a questionable teaching model. (Chemical change is said to involve bond breaking/making, and of course dissolving a salt does involve breaking up the ionic bonding to form solvent-solute interactions.)

Are there other examples?
Erm – dissolving.
So give me an example of something you might dissolve?
Salt.
Okay, and if you dissolve salt, you can't get it back?
Not really, not as it was before.
No. Can you get it back at all?
Sort of, you can like, erm, make the, boil the water so it turns into gas, and then you have salt, salt, salt on the, left there. Sometimes.
But you think that might not be quite the same as it was before?
No.
No. Different in some way?
Yeah
How might it be different?
Be much smaller.
Oh I see, so do you think you'd have less salt than you started with?
You'd have the same, but there would just be more particles, but they'd be smaller.
Ah, so instead of having quite large grains you might have lots of small grains
Yeah.

So Sandra was clear that one could dissolve salt, and then reclaim the same amount of salt by removing the solvent (water) which from the canonical perspective would mean the change was reversible – a criterion of a physical change.

Yet Sandra also thought that although the amount of salt would be conserved, the salt would be in a different form – it would have different grain size. (Indeed, if the water was boiled off, rather than left to evaporate, it might indeed be produced as very small crystals.)

So, Sandra seemed to have a fairly good understanding of the process, but because of the way she interpreted the criterion of a chemical change, something [salt] has changed into something else [solution] and you can't turn it back [with the same granularity]. Large grains will have changed into small grains – so this would, to Sandra's mind, be a chemical change.

Science teachers deserve a great deal of public appreciation. A teacher can teach something so that a student learns it well – and yet still form an alternative conception – here because of the inherent ambiguity in the ways language is used and understood. Sandra's interpretation – if you start off with large particles and end up with smaller particles then you have not turned it back – was a reasonable interpretation of what she had learnt. (It also transpired there was ambiguity in quite what was meant by particles.)

Author: Keith

Former school and college science teacher, teacher educator, research supervisor, and research methods lecturer. Emeritus Professor of Science Education at the University of Cambridge.

Leave a Reply

Your email address will not be published. Required fields are marked *

Discover more from Science-Education-Research

Subscribe now to keep reading and get access to the full archive.

Continue reading