Carbon electrons will be bigger than chlorine electrons

Carbon electrons will have more mass and charge than chlorine electrons

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12). She was shown a representation of a tetrachlomethane molecule.

Understanding Chemical Bonding project – Focal figure 3

When Annie was asked about the diagram, she was not sure if the differently represented electrons would actually be different from each other, She suggested that perhaps electrons from different atoms would actually contain some of the particular element. Annie seemed unsure where one could tell the difference between electrons from different atoms, but her intuition seemed to tell her they should be different,

Under further questioning, Annie was able to suggests ways in which carbon electrons would be different from chlorine electrons. Most science teachers may expect it would be quite obvious that one electron is much like another one in terms of essential properties (e.g., charge, rest mass). We probably assume students will readily appreciate this, and perhaps that it is not a point that needs to be emphasised. We might expect a student would immediately reject any suggestion that electrons from different atoms should be fundamentally different.

Do you think they would be the same size, electrons from carbon and electrons from chlorine?

No.

Which ones will be bigger, do you think?

The carbon ones.

Do you think they're the same charge? The same electrical charge?

No.

(pause, c.5)

No, which one do you think will have a bigger charge?

(pause, c.2s)

The carbon.

Yeah, what about colour. What colour do you think they will be?

Colours. What of the actual electrons?

Mm.

Mm, (pause, c.5s) I don't think they'd really have a colour, but I think if they had to have a colour, then they'd pick out the colour from the element.

A teacher is likely to expect an A level student to appreciate that all electrons are intrinsically the same. Annie seemed to think that the electrons of different atoms were different, somehow reflecting the particular element, and open to the idea they may differ in mass and charge, and possibly even colour.

Whilst Annie's comments are at odds with canonical science, they reflect thinking that is quite common among learners who often fail to appreciate the core principle of sub-microscopic models of matter, i.e., that the emergent properties of matter at macroscopic scale are explained in terms of the different properties of the tiny particles (i.e., quanticles) from which matter is conjectured to be constituted at a much finer scale. She was not keeping clearly distinguished macroscopic properties (such as colour) and properties that sub-atomic particles could have.

Electrons would contain some of the element

Electrons from different elements would be different – perhaps because they would actually contain some of the element in the electron?

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12). She was shown a representation of a tetrachlomethane molecule.

Understanding Chemical Bonding project – Focal figure 3

When Annie was asked about the diagram, she noted that (following a representational convention) the electrons were represented differently. Using different symbols like this is quite common, but is little more that a bookmaking tool – to help keep count of the number of electrons in the molecule in relation to those that would be present in discrete atoms.

…are there any bonds [shown] in that diagram do you think?

Yes.

How many?

Four.

Four bonds, so we've got four bonds there. Erm, are the bonds actually shown?

Yeah.

So how are they represented on the diagram?

By the circles that overlap, and they're showing it by the electrons, the outer-shell electrons in the chlorine have got black dots and the ones from carbon have got just circles.

Okay. So the carbon electrons and the chlorine electrons are signified in a different way

Yeah.

I followed up this point to check Annie understood that the convention did not imply that there was any inherent difference between the electrons.

So what would be the difference between a carbon electron and a chlorine electron?

(pause, c.5s)

The expected answer here was 'no difference', but the pause suggested Annie was not clear about this. So I set up an imaginary scenario, a kind of thought experiment:

If I gave you a bottle of electrons – which I can't do – how would you be able to tell chlorine electrons from carbon electrons – in what ways would they be different?

They would be different because, erm, I don't know if they would actually contain some of the element in the electron.

Do you think they might have little labels on some with "C"s and some with "Cl"s or

Yeah, I don't know if you got an electron, and you could sort of if you took one single one you could say, right that's chlorine and that one's carbon.

You are not sure, you are not sure if you could, or not?

No.

The idea that an electron might contain some of the element seems to miss the key idea that macroscopic phenomena (samples of element) are considerer to energy from extensive ensembles of submicroscopic particles ('quanticles').

Annie did not seem too sure here – perhaps her intuition was that a carbon electron would be different to a chlorine electron, but she could not suggest how. Electrons have no memories, and there is no way of knowing whether an electron has previously been part of a particular atom (or ion or molecule). A free electron is not meaningfully a chlorine electron or a carbon electron. However, students do not always appreciate this, and may consider that free electrons in some sense belong to an atoms they they derived form, and even that this may later have consequences (as with the 'history' conjecture in thinking about ionic bonding).

Annie went on to suggest that carbon electrons would be bigger than chlorine electrons.