The earth's one long-term objective

Scientist reveals what the earth has been trying to do

Keith S. Taber

Seismology – the study of the earth letting off steam? (Image by ELG21 from Pixabay)

"the earth has one objective, it has had one objective for four and half billion years, and that's…"

In our time

'In Our Time' is an often fascinating radio programme (and podcast) where Melvyn Bragg gets three scholars from a field to explain some topic to a general audience.

Imagine young Melvyn interrupting a physics teacher's careful exposition of why pV = 1/3nmc2 by asking how the gas molecules came to be moving in the first place.

The programme covers various aspects of culture.

BBC 'In our time'

I am not sure if the reason that I sometimes find the science episodes seem a little less erudite than those in the the other categories is:

  • a) Melvyn is more of an arts person, so operates at a different level in different topics;
  • b) I am more of a science person, so more likely to be impressed by learning new things in non-science topics; and to spot simplifications, over-generalisations, and so forth, in science topics.
  • c) A focus in recent years on the importance of the public understanding of science and science communication means that scientists may (often, not always) be better prepared and skilled at pitching difficult topics for a general audience.
  • d) Topics from subjects like history and literature are easier to talk about to a general audience than many science topics which are often highly conceptual and technical.

Anyway, today I did learn something from the episode on seismology ("Melvyn Bragg and guests discuss how the study of earthquakes helps reveal Earth's secrets [sic]"). I was told what the earth had been up to for the last four and half billion years…

Seismology: Where does this energy come from?

Quite early in the discussion Melvyn (sorry, The Lord Bragg CH – but he is so familiar from his broadcasts over the years that he seems like an old friend) interjected when Dr James Hammond (Reader in Geophysics at Birkbeck, University of London) was talking about forces involved in plate tectonics to ask "Where does this energy come from?". To this, Dr Hammond replied,

"The whole thing that drives the whole caboose?

It comes from plate tectonics. So, essentially the earth has one objective, it has had one objective for four and half billion years, and that's to cool down. We're [on] a big lump of rock floating in space, and it's got all this primordial energy, so we are going right back here, there's all this primordial energy from the the material coming together, and it's trying to cool down."

Dr James Hammond talking on 'In Our Time' 1

My immediate response, was that this was teleology – seeing purpose in nature. But actually, this might be better described as anthropomorphism. This explanation presents the earth as being the kind of agent that has an objective, and which can act in the world to work towards goals. That is, like a human:

  • The earth has an objective.
  • The earth tries to achieve its objective.

Read about teleology

Read about anthropomorphism

A flawed scientific account?

Of course, in scientific terms, the earth has no such objective, and it is not trying to do anything as it is inanimate. Basic thermodynamics suggests that an object (e.g., the earth) that is hotter than its surroundings will cool down as it will radiate heat faster than it absorbs it. 2 (Of course, the sun is hotter than the earth – but that's a rather minority component of the earth's surroundings, even if in some ways a very significant one.) Hot objects tend to cool down, unless they have an active mechanism to maintain their temperature above their ambient backgrounds (such as 'warm-blooded' creatures). 3

So, in scientific terms, this explanation might be seen as flawed – indeed as reflecting an alternative conception of similar kind as when students explain evolutionary adaptations in terms of organisms trying to meet some need (e.g., The brain thinks: grow more fur), or explain chemical processes in terms of atoms seeking to meet a need by filling their electron shells (e.g., Chlorine atoms share electrons to fill in their shells).

Does Dr Hammond really believe this account?

Does Dr Hammond really think the earth has an objective that it actively seeks to meet? I very much doubt it. This was clearly rhetorical language adopting tropes seen as appropriate to meet the needs of the context (a general audience, a radio programme with no visuals to support explanations). In particular, he was in full flow when he was suddenly interrupted by Melvin, a bit like the annoying child who interrupts the teacher's carefully prepared presentation by asking 'but why's that?' about something it had been assumed all present would take for granted.

Imagine the biology teacher trying to discuss cellular metabolism when young Melvin asks 'but where did the sugar come from?'; or the chemistry teacher discussing the mechanism of a substitution reaction when young Melvin asks why we are assuming tetrahedral geometry around the carbon centre of interest; or young Melvyn interrupting a physics teacher's careful exposition of why pV = 1/3nmc2 by asking how the gas molecules came to be moving in the first place.

Of course, part of Melvin's job in chairing the programme IS to act as the child who does not understand something being taken for granted and not explained, so vicariously supporting the listener without specialist background in that week's topic.

Effective communication versus accurate communication?

Science teachers and communicators have to sometimes use ploys to 'make the unfamiliar familiar'. One common ploy is to employ an anthropomorphic narrative as people readily relate to the human experience of having goals and acting to meet needs and desires. Locating difficult ideas within such a 'story' framework is known to often make such ideas more accessible. Does this gain balance the potential to mislead people into thinking they have been given a scientific account? In general, such ploys are perhaps best used only as introductions to a difficult topic, introductions which are then quickly followed up by more technical accounts that better match the scientific narrative (Taber & Watts, 2000).

Clearly, that is more feasible when the teacher or communicator has the opportunity for a more extensive engagement with an audience, so that understanding can be built up and developed over time. I imagine Dr Hammond was briefed that he had just a few minutes to get across his specific points in this phase of the programme, only to then find he was interrupted and asked to address additional background material.

As a scientist, the notion of the earth spending billions of years trying to cool down grates as it reflects pre-scientific thinking about nature and acts as a pseudo-explanation (something which has the form of an explanation, but little substance).

Read about pseudo-explanations

As cooling is a very familiar everyday phenomena, I wondered if a basic response that would avoid anthropomorphism might have served, e.g.,

When the earth formed, it was very much hotter than today, and, as it was hotter than its surroundings, it has been slowly cooling ever since by radiating energy into space. Material inside the earth may be hot enough to be liquid, or – where solid – be plastic enough to be deformed. The surface is now much cooler than it was, but inside the earth it is still very hot, and radioactive processes continue to heat materials inside the earth. We can understand seismic events as driven by the ways heat is being transferred from deep inside the earth.

However, just because I am a scientist, I am also less well-placed to know how effective this might have been for listeners without a strong science background – who may well have warmed [sic] to the earth striving to cool.

Dr Hammond had to react instantly (like a school teacher often has to) and make a quick call based on his best understanding of the likely audience. That is one of the difference between teaching (or being interviewed by Melvin) and simply giving a prepared lecture.

Work cited:

Taber, K. S. and Watts, M. (1996) The secret life of the chemical bond: students' anthropomorphic and animistic references to bonding, International Journal of Science Education, 18 (5), pp.557-568.

Note

1 Speech often naturally has repetitions, and markers of emphasis, and hesitations that seem perfectly natural when heard, but which do not match written language conventions. I have slightly tidied what I transcribed from:

"The whole thing that drives the whole caboose? It comes from plate tectonics, right. So, essentially the earth, right, has one objective, it has had one objective for four and half billion years, and that's to cool down. Right, we're a big lump of rock floating in space, and it's got all this primordial energy, so we are going right back here, there's all this primordial energy from, from the the material coming together,4 and it's trying to cool down."

2 In simple terms, the hotter an object is, the greater the rate at which it radiates.

The hotter the environment is, the more intense the radiation incident on the object and the more energy it will absorb.

Ultimately, in an undisturbed, closed system everything will reach thermal equilibrium (the same temperature). Our object still radiates energy, but at the same rate as it absorbs it from the environment so there is no net heat flow.

3 Historically, the earth's cooling was an issue of some scientific controversy, after Lord Kelvin (William Thomson) calculated that if the earth was cooling at the rate his models suggested for a body of its mass, then this was cooling much too rapid for the kind of timescales that were thought to be needed for life to have evolved on earth.

4 This is referring to the idea that the earth was formed by the coming together of material (e.g., space debris from a supernova) by its mutual gravitational attraction. Before this happens the material can be considered to be in a state of high gravitational potential energy. As the material is accelerated together it acquires kinetic energy (as the potential energy reduces), and then when the material collides inelastically it forms a large mass of material with high internal energy (relating to the kinetic and potential energy of the molecules and ions at the submicroscopic level) reflected in a high temperature.

Author: Keith

Former school and college science teacher, teacher educator, research supervisor, and research methods lecturer. Emeritus Professor of Science Education at the University of Cambridge.

Leave a Reply

Your email address will not be published. Required fields are marked *