Keith S. Taber
…but is it the same as an atomic nucleus?
Bert was a participant in the Understanding Science Project. Bert was interviewed in Y10 and asked about the topics he had been studying, which included circulation in biology, static electricity in physics, and oxidation in chemistry. He had talked about protons, electrons and atoms in both chemistry (studying atomic structure) and physics (studying static electricity), and was asked if this could also link with biology:
Do you think there are any links with Biology?
Yeah, well there are lots of atoms in you. And we did about the nucleus which we've been doing about in Biology. I'm not sure if there's a link between it, but.
Ah, that's interesting, so
'cause we did about plant and animal cells in Biology, so it's got a nucleus….as I was saying about the blood cells and things. We were doing about the animal and plant cells and, you know, we were seeing what's the same between them and what's different.
So a connection between physics and chemistry on one hand, and biology on the other, was that cells also had a nucleus. This is a term used across these three sciences, but of course the concepts of atomic and cellular nuclei are quite distinct. Was that clear to Bert? What did he understand about cellular nuclei?
So what's the nucleus then?
It's kind of like erm, the brain of the cell kind of. It's, it's what gets the cell to do everything, it's like, the core of the cell.
This response is interesting because, at one level, it suggests that Bert did not have a detailed and well-focussed 'off pat' answer. However, that may not be such a bad thing – definitions that are learnt 'off by heart' may only represent rote learning and may not be well understood. Indeed, it has been argued (in the work of Thomas Kuhn, for example) that in learning science a technical definition is often only really useful once the concept has been acquired: that is once the meaning of the word being defined has, to some degree, already been grasped.
At another level, Bert's answer could be seen as quite sophisticated. What could be taken as an ambiguous response, a difficulty in finding the words to represent his thinking, could also be seen as multifaceted:
- essential: the nucleus is the brain of the cell
- functional: the nucleus controls the cell (it's what gets the cell to do everything)
- structural: the nucleus is the core of the cell
That is, Bert's response could be read, not as a series of alternative suggestions and self-corrections, but rather as a set of complementary images or 'faces' of a complex idea. That would fit with a notion of concepts as being nodes in conceptual networks where the meaning of a particular concept depends upon the way it is associated with others.
(Read about 'Concepts')
The suggestion that the brain reference is intended to be about the essential nature of the nucleus is of course a reading of the text that must be seen as a speculative interpretation. (It probably does not even make sense to ask if Bert intended it this way, as in conversation much of our dialogue does not await deliberation, but is spontaneous, relying largely on implicit cognition.) But, as a teacher, I can see this as a kind of pedagogic device along the lines: 'you ask we what the nucleus is, let me compare it with something you will be familiar with, in essence it is like the brain of the cell'.
This is clearly meant metaphorically ("kind of like erm, the brain of the cell kind of"): that is, it is assumed that the person hearing the metaphor can make the expected sense of the comparison. Metaphors have an essential (sic) role in teaching and in communication more generally, though like other such 'figures' of speech (simile, analogy, anthropomorphism, animism), may become habitually used in place of the deeper meaning they are meant to introduce (Taber & watts, 1996).
(Read about 'metaphor in science')
…
It's kind of like erm, the brain of the cell kind of. It's, it's what gets the cell to do everything, it's like, the core of the cell.
Okay. And why is there a connection with Chemistry or the Physics then?
Because erm, we were doing, we were doing in Chemistry about the nucleus has the – neutrons and the protons in the nucleus, then around it is a field of electrons.
…So why is that a connection then? Why is that a connection between the Biology and the Chemistry and the Physics?
Well it's just the nucleus comes under both of them.
Comes under both of them. So is it the same thing?
I wouldn't have thought so, but because when I think of electrons and neutrons I think of electricity, which I don't really think of in our, in our bodies but it could be perhaps. We haven't been told about that.
So there is ambiguity in Bert's report: the nucleus comes up in chemistry and physics in the context of atoms, and in biology in the context of cells. Although the term is the same, so there is at least that connection, Bert "wouldn't have thought" it was the same thing in these different contexts (after all, he would not expect there to be electricity in our bodies!) …but, then again, "it could be perhaps", as they had not been told otherwise. (A possible subtext here being: surely the teacher(s) would have pointed out this was something different if they were going to use the same word for two different things in science lessons?)
The use of the same word label, nucleus, for the rather differently natured nuclei in atoms and cells has potential to act as a linguistic learning impediment (a form of associative learning impediment) as one meaning will likely already be established when a learner meets the other use of the word. It perhaps makes matters worse that part of the meaning, the central component (the structural 'face' of the concept), is the same, than had the usage been clearly unrelated (as in 'bank' being a financial institution and the structure at the edge of a rvier such that the context of use make confusion unlikely). Not only that, but for Bert, these were components of similarly "really microscopic" entities (see 'The cell nucleus is "probably" bigger than an atomic nucleus').
From the perspective of the science teacher, there is little basis for confusing the nucleus of an atom with that of a cell: obviously a cell is a complex entity with a great many components, each of which has itself a complex supra-molecular structure – so clearly the atomic nucleus is on a scale many orders of magnitude smaller than a cell nucleus. However, the expert perspective is based on relating a lot of knowledge that the novice may not yet have, or at least, may not yet be coordinating. In Bert's case, he was only just starting to coordinate these ideas (see 'The cell nucleus is "probably" bigger than an atomic nucleus').
Source cited:
- Taber, K. S. and Watts, M. (1996) The secret life of the chemical bond: students' anthropomorphic and animistic references to bonding, International Journal of Science Education, 18 (5), pp.557-568