She'd never thought about whether ionic bonding is the same thing as chemical bonding

Keith S. Taber

Amy was a participant in the Understanding Science Project. When I talked to her near the start of her GCSE 'triple science' course in Y10 she told me that ionic bonding was "atoms which have either lost or gained electrons so they are either positively or negatively charged" and that chemical bonding was "like in a compound, where two or more elements are joined together", but she seemed unsure how the two concepts were related.

I followed up on Amy's use of the term 'compound' to explore how she understood the term:

How would you define a compound?

Erm Something which has erm two or more elements chemically bonded.

… So you give me an example of that, compound?

Erm, sodium oxide.

Sodium oxide, okay, so there are two or more elements chemically bonded in sodium oxide are there?

Uh hm

And what would those two or more elements be?

Sodium and oxygen.

Okay. Erm, so when we say sodium oxide is chemically bonded, what we are saying there is?

[pause, c 2s]

Erm – a sodium atom has been bonded with a oxygen atom to form erm a new substance.

So Amy's example of a compound was sodium oxide, which would normally be considered essentially an ionic compound, that is a compound with ionic bonding. So this gave me an opportunity to test out whether Amy saw the bonding in sodium chloride and sodium oxide as similar.


Okay, so that was chemical bonding,

Mm.

and that occurs with compounds?

Yeah.

And what did you say about ionic bonding?

Erm, it's the outer electrons they are transferred from one element to another.

Now what does that occur in? You gave me one example, didn't you?

Uh huh

Sodium chloride?

Yeah

Erm. Would sodium chloride be er an element?

[pause, c.2s]

Sodium chloride, no.

No?

It would be a compound.

You think that would be a compound?

Yeah.

And a compound is two or more elements joined together by chemical bonding?

Yeah.

So Amy had told me that sodium chloride, which had ionic bonding, was (like sodium oxide) a compound, and she had already told me that a compound comprised of "two or more elements chemically bonded", so it should be follow that sodium chloride (which had ionic bonding) had chemical bonding.

Do you think sodium chloride has chemical bonding?

Er – I think so

And it also has ionic bonding, or is that the same thing?

Erm,

[pause, c.2s]

I dunno, I've never thought about it that way, erm,

[pause c.3s]

I'm not sure, erm

[pause, c.2s]

I dunno, it might be.

Clearly, whatever Amy had been taught (and interviewing students reveals they often only recall partial and distorted versions of what was presented in class) she had learnt

  • (1) that ionic bonding was transfer of electrons (an alternative conception) as in the example of sodium transferring an electron to chlorine; and that
  • (2) a compounds was where two or more elements chemically bonded together, and an example was sodium oxide where the elements sodium and oxygen were chemical bonded.

Yet these two pieces of learning seemed to have been acquired as isolated ideas without any attempt to link them. Initially Amy seemed to feel ionic bonding and chemical bonding were quite separate concepts.

When taken through an argument that led to her telling me that sodium chloride, that she thought had ionic bonding, was a compound, which therefore had chemical bonding, there should have been a logical imperative to see that ionic bonding was chemical bonding (actually, a kind of chemical bonding – as the logic did not imply that chemical bonding was necessarily ionic bonding). Despite the implied syllogism:

  • sodium chloride has ionic bonding
  • sodium chloride is a compound
  • compounds have elements chemically bonded together
  • therefore ionic bonding …

Amy was unsure what to deduce, presumably because she had seen the two concepts of ionic bonding and chemical bonding as discrete notions and had had given no thought to a possible relationship between them. However explicit teaching had been on this point, it is very likely that the teacher had expected students to appreciate that ionic bonding was a type of chemical bonding – but Amy had not integrated these ideas into a connected conceptual structure (i.e., there was a learning bug that could be called a fragmentation learning impediment).

Ionic bonding – compared with chemical bonding

Keith S. Taber

Amy was a participant in the Understanding Science Project. The first time I talked to Amy, near the start of her GCSE 'triple science' course in Y10 she told me that "in normal chemistry (i.e., the chemistry part of 'double science', as opposed to the optional additional chemistry lesson as part of 'triple science' that Amy also attended) we're doing about ionic bondingwhich she understood in terms of "atoms which have either lost or gained electrons so they are either positively or negatively charged" because "in ionic bonding it's the electrons that are transferred".

When asked other examples of ionic bonding apart from sodium and chlorine Amy told me "That's the one I did".

To a teacher it seems inherently obvious that ionic bonding is type of bonding – in much the way that a snare drum is a kind of drum or a conscientious student is a type of student. However, this may not always be obvious to students (even the conscientious ones).

When I asked Amy about bonding she referred to things being chemically bonded, and when I asked if ionic bonding was the same as chemical bonding, she was not sure how these concepts were related:

So what exactly is bonding?

Erm, where er one thing is joined on to another thing, and it can be chemically bonded or, yeah {laughs}

So we can talk about chemical bonding?

Mm.

Are there other types of bonding then?

Erm, there must be, if there's chemical bonding, I'm not sure, erm

[pause, c.5s]

But we talk about chemical bonding,

Mm.

and we talk about ionic bonding. So is ionic bonding the same thing as chemical bonding or is there a difference?

Erm, in, well in chemical bonding, erm like in a compound, where erm – two or more elements are joined together, that's an example of chemical bonding, but in – erm – ionic bonding it's the erm electrons that are transferred. [pause, c.2s] I think.

It seems Amy had been taught about chemical bonding and had learn about this as "a compound, where two or more elements are joined together", and she had been taught about ionic bonding and had learnt that this was where "the electrons are transferred".

Ionic bonding is not (and need not be associated with) electron transfer. It is not possible form talking to Amy to now exactly what her teacher told her – clearly she could have misunderstood or forgotten material form class. It is possible that it was made clear that ionic bonding was one type of chemical bonding, but Amy either missed that point or did not now recall it. It is also possible is was not made explicit but was assumed to be obvious (especially if ionic bonding had been presented as part of a sequence on chemical bonding. Sadly, what is obvious to teachers is not always obvious to learners, and indeed I've seen in my interviews that students are not always clear when one topic has finished and another has started. There is no sense here that I wish to criticise the teacher (who for all I know gave an exemplary presentation of the chemical bonding), but would simply suggest that when teaching one can never assume what should be obvious is obvious and that it is probably difficult to be too explicit about key ideas, or to reiterate them too often!

So at this point it seemed Amy only knew one example of ionic bonding, sodium chloride, and did not associate this with compounds which had chemical bonding. This could be considered a fragmentation learning impediment – a failure to make a link that was expected from the teaching. I went on to ask her for an example of a compound, and a she told me about sodium oxide I thought this was an opportunity to probe at the association between ionic boding and chemical bonding a little more.

Ionic bonding – where the electron's transferred to complete the outer shell

Keith S. Taber

Amy was a participant in the Understanding Science Project. The first time I talked to Amy, near the start of her GCSE 'triple science' course in Y10 she told me that "in normal chemistry (i.e., the chemistry part of 'double science', as opposed to the optional additional chemistry lesson as part of 'triple science' that Amy also attended) we're doing about ionic bondingwhich was "atoms which have either lost or gained electrons so they are either positively or negatively charged" and

"how the outer electron's transferred…to complete the outer shell of the erm chlorine, thing, ion…and the sodium atom loses erm, one electron is it, yeah one electron, erm, which the chlorine atom gains, and that yeah that completes its outer shell and makes the sodium positively charged and the chlorine negatively charged".

Amy told me that "in ionic bonding it's the electrons that are transferred, I think."

So Amy had acquired a common alternative conception, i.e. that ionic bonding involved electron transfer, and that this occurs to atoms to complete their electron shells.

Ionic bonding refers to the forces between ions that hold the structure of an ionic substance together, rather than a mechanism by which such ions might hypothetically be formed – yet often learners come away form learning about ionic bonding identifying it with a process of electron transfer between atoms instead of interactions between ions which can be used to explain the properties of ionic substances.

Moreover, the hypothetical electron transfer is a fiction. In the case of NaCl such an electron transfer between isolated Na and Cl atoms would be energetically unfavourable, even if reactants containing discrete atoms were available (which is unrealistic).

Whether students are taught that ionic bonding is electron transfer is a moot point, but often introductory teaching of the topic focuses not on the nature of the bonding, but on presenting a (flawed) teaching model of how the ions in the ionic structure could form by electron transfer between atoms. As this mechanism is non-viable, and so not an authentic scientific account, it may seem odd that teachers commonly offer it.

One explanation may simply be custom or tradition has made this an insidious alternative conception. Science teachers and textbooks have 'always' offered the image of electron transfer as representing ionic bonding. So, this is what new teachers had themselves been taught at school, is what they often see in textbooks, and so what they learn to teach.

Another possible explanation is in terms of what what is known as the atomic ontology. This is the idea that the starting pint for thinking about chemistry at the submicroscopic level is atoms. Atoms do not need to be explained (as if in nature matter always starts as atoms – which is not the case) and other entities such as ions and molecules do need to be explained in terms of atoms. So, the atomic ontology is a kind of misleading alternative conceptual framework for thinking about chemistry at the submicroscopic level.

Current only slows down at the resistor

Current only slows down at the resistor – by analogy with water flow 

Keith S. Taber

Students commonly think that resistance in a circuit has local effects, and in part that is because forming a mental model of what is going on in circuits is very difficult. Often models and analogies can be useful. However when an analogy is used in teaching there is also the potential for it to mislead.

Amy was a participant in the Understanding Science Project. Amy (when in Y10) told me she had been taught to use a water flow analogy for electric current. However, because her visualisation of what happens in water circuits was incorrect, she used the analogy to inform an alternative conception about circuits:

Do you have any kind of imagined sort of idea, any little mental models, about what (the flow of electricity round the circuit) might look like? Do you have a way of imagining that?

Erm, yeah, we've been taught the water tank and pipe running round it. … just imagine the water like flowing through a pipe, and obviously like, if the pipe becomes smaller a one point, erm, the water flow has to slow down, and that's meant to represent the resistance of something.

So, so if I had my water, er, tank and I had a series of pipes, they'd be water flowing through the pipes, and if I had a narrower pipe at one point, what happens then?

The water would have to slow down.

So would it slow down just as it goes through the narrow pipe, or would it slow down all the way round?

Erm – just through that part.

(Amy does not appreciate the implications of conservation of mass {that is, the continuity principle} here – at steady state there cannot be a greater mass flow at different points in the circuit).

And so how do you imagine that's got to do with resistance, how does that help you understand resistance?

…well resistance, it slows the current down, but then erm, once it passes a resistor or something it, the current is free to flow through the wire again

Analogies can be very useful teaching tools, but when using them it is important to check that the students already understand the features of the analogue that are meant to be helpful. It is also important to ensure that they understand which features are meant to be mapped onto the target system they are learning about, and which are not relevant.

Analogies are only useful when the learner has a good understand of the analogue. In this case, as Amy did not appreciate that the water flow throughout the system would be limited by the constriction, she could not use that as a useful analogy for why a resistor influences current flow at all points in a series circuit. This is an example of where a teaching model meant to support learning, which actually misleads the learner. That is, for Amy, with her flawed understanding of fluid flow, the teaching model acted as a pedagogic learning impediment – a type of grounded learning impediment.

The electrons come from batteries

Electrons flowing through circuits come from batteries 

Keith S. Taber

Bill was a participant in the Understanding Science Project. I was asking him about topics he had studied in science, and I asked about electricity:

…have you done any work on electricity?

Erm, yes, I've done a bit.

Do you remember any of that?

Er we had to use symbols to draw circuits, and then we got to make those circuits.

Ah, so you remember doing the symbols, and you remember making up the circuits?

Yeah.

That's good. So what exactly is electricity?

It's made up of electrons which, erm, flow through wires, and into light bulbs to light them up. And they come from batteries.

Electrons do?

Yeah.

So what are electrons?

Erm {pause, c.4s} really don't know.

Bill here demonstrates a common alternative conception that in a circuit the battery, or other power supply, provides the electrons that flow, rather than providing a the electric field which acts on the electrons already present in the conducting path (e.g., in the wires).

The Sun would pull more on the Earth…

Bert's understanding of the reciprocal nature of forces 


Keith S. Taber


Bert was a participant in the Understanding Science Project. A key idea in school physics is that forces occur in pairs, when two bodies exert an equal magnitude force upon each other (as required by Newton's third law). However, this seems counter intuitive to pupils, who may expect that a larger (more massive, or greater charge etc.) object would exert a greater force on a smaller body than vice versa. In physics a distinction is made between the forces (always equal) and their effects (which depend upon the force applied, and the mass of the object being acted upon). This distinction is not always made by students.

When in Y11, Bert offered an example of one of the common alternative conceptions found among students – that the larger body will exert more force:

What about the Earth going round the Sun, that's an orbit as well is it?

Yeah.

So why does it go round?

Why does it go round?

Yeah.

Erm because erm, well one is the gravity of it pulling and the other is, I'm not so sure what the other force is.

That's gravity of what?

The Sun.

So the gravity of the Sun pulling on the Earth?

Yeah.

Do you think the Earth pulls on the Sun?

Yeah, I guess but not strongly enough to move the Sun. Because if there's an object with a small amount of mass then it's not going to give off as much pull as something ten times bigger as it. So the Earth would pull more on the Sun, I mean the Sun would pull more on the Earth.

Whereas the physics perspective is that a force is an interaction between bodies, Bert talks as though a force is something that emanates from one body to another ("give off … pull"), a way of talking quite common among students applying their intuitive understanding of force.

Many students conflate the force acting on a body, and its effect (the acceleration produced) – so here the Sun and Earth are subject to the same force, but the earth is much less massive so will accelerate much more subject to that force than the Sun would. (The Sun's acceleration would actually depend on the net force acting on it considering the various bodies in orbit around it.)

Common experience tells us that in interactions between contrasting bodies (e.g., consider a fly on a windshield) the larger object has more effect, which may seem naturally to mean it applies more force (how much force can the tiny fly impart? – surely the car must apply more force to the fly?) So there is an intuition here, which can act as a grounded learning impediment to learning the physics formalism.




Sodium has one extra electron in its outer shell, and chlorine is minus an electron, so by force pulls they would hold together

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching.

Focal figure (Fig. 5) presented to Annie

She was shown a representation of part of a lattice of ions in sodium chloride (see: Sodium and chlorine don't actually overlap or anything), but Annie identified the signified as atoms, not ions, because Annie had an idiosyncratic understanding of what was meant by charge. (Read: Na+ has an extra electron in its outer shell and Cl- is minus an electron and K-plus represents a potassium atom that has an extra electron.)

Annie was asked whether the structure made up of sodium and chlorine 'atoms' would hold together:

Do you think this thing would fall apart? Or would it hold together?

(pause, c.9s)

If you heated it, or reacted it in some way, it would hold together, and it would probably get held together by just forces.

By forces. Any idea what kind of forces would hold it together?

Probably just the attraction.

Uh hm?

The attraction from the plus to the minus because like chlorine's minus an electron and sodium is over an electron. So they could just like hold them together, but not actually combine.

Right, chlorine's, so sodium's, say that about the electrons again.

Sodium has like one extra electron, 'cause it has like an extra electron in its outer shell, and chlorine has seven electrons in its outer shell so its minus an electron so by sort of exchanging, the sodium combining with the chlorine just by force pulls they would hold together.

So Annie saw the plus (+) symbol to mean one electron over a full shell (2.8.1), and the minus (-) symbol to mean one electron short of an octet of electrons (2.8.7). For Annie these charges were not net electrical charges, but deviations from octet configurations. Yet, these 'deviation charges', for Annie, provided the basis for the attraction between the 'charged' atoms.

This was checked by asking Annie about the electron configurations.

So we looked at a sodium atom earlier, you recognised it as being a sodium atom, …

Can you tell me what the configuration is in terms of shells? How many in the first shell, how many in the second shell…

2.8.1

2.8.1?

Yeah.

So this here (indicating a cation on the figure), you are saying that this here is 2.8.1

Yes.

And this is 2.8.7 would it be?

Yeah, 2.8.7

And that is what holds them together the fact that this is one short,

yeah,

one over and one short.

One over, and that one's one short.

So the plus means one electron more than an outer, the full shell,

Yeah.

and the minus means one electron

Minus.

less than an outer shell,

Yeah.

and that's what holds them together.

Yeah.

Okay, so there is something holding them together,

right,

and it's to do with these pluses and these minuses,

Yes.

but what we don't have there is chemical bonding like we had before.

No.

Annie held an alternative conception of the nature of the charges associated with ions: that neutral atoms had 'charges' if they did not have full shells/octets of electrons. Whilst Annie's specific deviation charge conception would seem to be rather unusual, alternative conceptions relating to the significance of full shells / octets of electrons seems to be very common among chemistry students. Although Annie's thinking was idiosyncratic it reflected the common full shells explanatory principle that sees electronic configuration as a cause for chemical processes.

So Annie considered that these 'deviation' charges could actually give rise to forces between atoms (see also The force of lack of electrons pulls two hydrogen atoms together*).

Annie did not see ions, but atoms. But she thought that after a reaction, there would be attractions, 'force pulls', holding the product together, but this would not amount to chemical bonding.

Annie's notion of 'charges' on atoms (being extra or missing electrons in the outer shell), that led to her not recognising bonding in the NaCl, was an uncommon alternative conception notion. However, her notion that chemical bonding was something other than 'just forces', and that sometimes structures were held together by 'just forces' when there was no bonding, is a common alternative conception. Indeed it is part of a common 'molecular framework' for conceptualising ionic bonding, that is in turn a part of a common alternative conceptual framework for thinking about chemical bonding, stability and reactions: the octet framework.


Na+ has an extra electron in its outer shell and Cl- is minus an electron

The plus sign shows Na+ has an extra electron in its outer shell; the minus sign shows Cl has seven electrons in its outer shell so its minus an electron

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching.

Focal figure (Fig. 5) presented to Annie in interview

She was shown a representation of part of a lattice of ions in sodium chloride (see: Sodium and chlorine probably get held together by just forces*), but Annie identified the signified as atoms, not ions:

Any idea what that’s meant to be?

(pause, c.6s)

Just sodium and chlorine atoms.

As an A level student, Annie would be expected to understand the differences between atoms, ions and molecules, and to known that there were ions in NaCl, but this could have been a simple slip of the tongue. This was tested by further questioning:

Erm, so if you look at these, I mean you said they were sodium and chlorine

Yes.

because presumably you recognise the Na and the Cl,

Yeah.

but only two of them are labelled with ‘Na’ and ‘Cl’.

Yes.

What about the others – what do you think they are?

They’re probably sodium and chlorine, or else they could be, because of the signs, you’ve got plus and minus signs on them representing the charge, or else it could be similar elements going down the groups.

Okay, so you recognise that these, these things represent charges, and you probably guess it’s just me being lazy that I haven’t labelled them all, [Annie laughs] so I’ve just labelled the first couple, erm, so these are what, so you reckon this little one will be, what will that be do you reckon?

Sodium.

That will be a sodium, molecule?

Atom.

Sodium atom, what about this one here?

Chlorine atom.

That’ll be an atom. But these have got charges on?

Yeah.

So Annie recognised the symbols for positive and negative charges, and thought that the figure signified atoms, with charges. The simplest interpretation here is simply that Annie did not recall that atoms were neutral, and 'charged atoms' are called ions in chemistry.

However, Annie then told me that sodium has like one extra electron in its outer shell, and chlorine is minus an electron, so by force pulls they would hold together, and explained this in terms of her notion of charges:

…say that about the electrons again.

Sodium has like one extra electron, ‘cause it has like an extra electron in its outer shell, and chlorine has seven electrons in its outer shell so its minus an electron so by sort of exchanging, the sodium combining with the chlorine just by force pulls they would hold together.

So Annie saw the plus (+) symbol to mean one electron over a full shell (2.8.1), and the minus (-) symbol to mean one electron short of an octet of electrons (2.8.7). For Annie these charges were not net electrical charges, but deviations from octet configurations. These 'deviation charges', for Annie, provided the basis for the attraction between the 'charged' atoms.

This was checked by asking Annie about the electron configurations.

So we looked at a sodium atom earlier, you recognised it as being a sodium atom, I did not say it was, and that had an electronic configuration of…do you remember what the electron configuration was?

Eleven.

So a total of eleven electrons

Yeah.

So do you know what shells they were going to?

Sorry?

Can you tell me what the configuration is in terms of shells? How many in the first shell, how many in the second shell…

2.8.1

2.8.1?

Yeah.

So this here (indicating a cation on the figure), you are saying that this here is 2.8.1

Yes.

And this is 2.8.7 would it be?

Yeah, 2.8.7

Annie held an alternative conception of the nature of the charges associated with ions: that neutral atoms had charges if they did not have full shells/octets of electrons. That this was a general feature of her thinking became clear when she was asked about the symbols for other ions: such as K+ and F.

Whilst Annie's specific 'deviation charge' conception (i.e., that (neutral) atoms would be charged when they did not have fill shells/octets of electrons) would seem to be rather idiosyncratic, alternative conceptions relating to the significance of full shells / octets of electrons seems to be very common among chemistry students.

Although species with Annie's deviation charges did not have actual overall electrical charge, Annie considered that these 'deviation' charges could actually give rise to forces between atoms (she thought that as sodium has one extra electron in its outer shell, and chlorine is 'minus an electron', then they would hold together; The force of lack of electrons pulls two hydrogen atoms together⚗︎).

 

Calcium and oxygen would not need to bond, they would just combine…

Calcium and oxygen would not need to bond, they would just combine, joining on to make up full shells

Keith S. Taber 

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching. Near the end of the interview, she was asked some general questions to recap on points she had made earlier. She suggested that Ca2+ and O2- would combine, but without any chemical bonding.

Could you have a double ionic bond?

(pause, c.3s)

Can you have a double bond that's ionic?

Not really sure.

If you had say, say you had calcium, two-plus (Ca2+), and oxygen two-minus (O2-),

yeah,

could that form a double bond?

(pause, c.4s)

Are you not sure?

It wouldn't need to.

It wouldn't need to?

No.

Why's that?

Because one's lacking two electrons, and one's got two, so, they would just combine without needing to sort of worry about other, other erm elements.

Right so they…

Sort of joining on to make up full shells.

So they combine, but you wouldn't call that a chemical bond?

No.

From what Annie had reported earlier in the interview, she would see Ca2+ as a calcium atom (that's "got two" electrons in its outer shell) and O2- as a oxygen atom (that was "lacking two electrons"), as she held an alternative conception of what was meant by the symbols used to indicate electrical charge plus and minus signs represent the charges on atoms)*.

Annie here suggests that the atoms with their charges (i.e., for Annie, deviations form full shells) would combine, and join up to obtain a full shell. From her perspective, there was no need for ionic bonding. Although Annie's notion of what was signified by the charge symbols would seem to be idiosyncratic, the idea that chemical processes occur to allow atoms to obtain full shells (the 'full shells explanatory principle') is one of the most common alternative conceptions in chemistry.

Atoms within an element don't need to be bonded …

Atoms within an element don't need to be bonded because they're all the same sort

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching. Annie was shown a representation of the close packing of 'atoms' in a metal (with the iron symbol, Fe, shown).

Okay, have a look at number 6…

• • • • • • (pause, c.6 s)

They are obviously iron atoms within an element.

Iron atoms within the element?

Yeah.

Okay. Can you say anything about the arrangement of the atoms?

They're all lined together. They're all close together.

They're closely together, yes, and they're all lined together, there's some sort of regular pattern there okay?

Yeah.

So you think that's in the element, that's a lump of iron, a sort of, a magnified view of a lump of iron.

Yes.

So Annie did recognise the image as representing particles ('atoms') in solid iron. The image showed the particles close together, and Annie was asked if they would hold together – the intention being to find out what, if anything, Annie knew about metallic bonding. Annie did think the atoms would be held together, but she did not suggest this was due to a bond or even a force (cf. "Sodium and chlorine don't actually overlap or anything and would probably get held together by just forces"*).

Do you think those atoms will hold together?

Yes.

Why do you think that is?

Because they're all the same sort.

Does that make them hold together?

Yeah.

So it seemed that Annie held an alternative conception that atoms of the same sort would hold together because they were of the same type. This interpretation was tested.

Yeah? Do you think there is any kind of bonds between the atoms?

• • • • • • • • • (pause, c.9s)

No, because they're all the same and they don't need to be bonded.

Right, okay so recapping…here we've got an example of something where the atoms are all the same, and that holds them together even though there's no chemical bonds.

Yeah.

So Annie held an alternative conception of atomic coherence – that atoms of the same type did not need bonding to hold them together, as being the same kind of atom was sufficient for them to hold together.

It is unlikely that Annie had been taught this idea, and it seems quite possible it is an intuitive idea that might be acting as an example of a 'grounded learning impediment': a notion based on general experience, and inappropriately applied in the context of atomic interactions.

An element needs a certain number of electrons

An element needs a certain amount of electrons in the outer shell

Keith S. Taber

Bert was a participant in the Understanding Science project. In Y10 Bert was talking about how he had been studying electrolysis in class. Bill had described electrolysis as "where different elements are, are taken out from a compound", but it transpired that Bert thought that "a compound is just a lot of different elements put together"*. He seemed to have a tentative understanding that electrolysis could only be used to separate elements in some compounds.

if they're positive and negative then they would be able to be separated into different ones.

So some things are, some things aren't?

Yeah, it matters how many electrons that they have.

Ah. [pause, c.3s] So have you got any examples of things that you know would definitely be positive and negative?

Well I could tell you what happens.

Yeah, go on then.

Well erm, well if a, if an element gives away, electrons, then it becomes positive. But if it gains, then it becomes negative. Because the electrons are negative, so if they gain more, they just go a bit negative.

Yeah. So why would an element give away or gain some electrons? Why would it do that?

Because erm, it needs a certain amount of electrons in the outer shell. It matters on what part of the periodic table they are.

Okay, let me be really awkward. Why does it need a certain number of electrons in the outer shell?

[Pause, c.2 s]

Erm, well, I don't know. It just – 

So Bert thought that an element "needs a certain amount of electrons in the outer shell" depending upon it's position in the periodic table, but he did not seem to recall having been given any reason why this was. The use of the term 'needs' is an example of anthropomorphism, which is commonly used by students talking about atoms and molecules. Often this derives from language used by teachers to help humanise the science, and provide a way for students to make sense of the abstract ideas. If Bert comes to feel this is a sufficient explanation, then talk of what an element needs can come to stand in place of learning a more scientifically acceptable explanation, and so can act as a grounded learning impediment.

References to atoms needing a certain number of electrons is often used as an explanatory principle (the full shells explanatory principle) considered to explain why bonding occurs, why reactions occur and so forth.

Bert's final comment in the short extract above seems to reflect a sense of 'well that's just the way the world is'. It is inevitable that if we keep asking someone a sequence of 'well, why is that' question when they tell us about their understanding of the world, they eventually reach the limits of their understanding. (This tendency has been labelled 'the explanatory gestalt of essence'.) Ultimately, even science has to accept the possibility that eventually we reach answers and can not longer explain further – that's just the way the world is. Research suggests that some students seem to reach the 'it's just natural' or 'well that's just the way it is' point when teachers might hope they would be looking for further levels of explanation. This may link to when phenomena fit well with the learner's intuitive understanding of the world, or tacit knowledge.

Bert's reference to an element needing a certain amount of electrons in the outer shell also seems to confuse description at two different levels: he explicitly refer to substance (element), when he seems to mean a quanticle (atom). Element refers to the substance, at the macroscopic level of materials that can be handled in the laboratory, whilst an atom of the element (which might better be considered to gain or lose electrons) is part of the theoretical model of matter at a submicroscopic level, used by chemists as a basis for explaining much macroscopic, observed behaviour of samples of substances.


A sodium atom wants to donate its electron to another atom

Keith S. Taber

Lovesh was a participant in the Understanding Chemical Bonding Project, studying 'A level' chemistry in a further education college. He was interviewed in his second year of the two year A level course, and was presented with focal figure 1 (below). He recognised figure 1 as showing a "sodium, atom", and was asked about its stability:

Is that a stable species, do you think?

Erm (pause, c.3s) No, because it hasn't got a, a full outer – electron shell, outer electron shell hasn't got eight electrons in.

Lovesh shared the common notion that an atom without a full outer shell / octet of electrons would be unstable compared with the corresponding ion with a full outer shell / octet of electrons. When comparing isolated atoms with the corresponding ions this is seldom the case, yet this is a common alternative conception about chemical stability. A sodium ion can be considered stable in an ionic lattice, or when hydrated in solution, but does not spontaneously ionise as the outer shell electron is attracted to the atom's positive core. Ionisation only occurs when sufficient work is done to overcome this attraction.

Lovesh was demonstrating the common full shells explanatory principle alternative conception which is central to the common octet rule framework – an alternative conceptual framework reflecting very common 'misconceptions' found among learners studying chemistry.

Lovesh was asked what would happen to the atom that he considered unstable:

So if it's not stable, what would tend to happen to that, do you think?

It will wanna donate the electron to another atom.

Right, when you say 'it wants to donate' it?

Erm. (pause, c.3s) Well because that outer electron is less attracted to the nucleus, erm it is, it can easily be transferred, attracted by another atom.

Lovesh's first response here used the term 'wanna' (want to) which if take literally suggests the atom has desires and preferences. This is an example of anthropomorphism, imbuing objects with human-like traits. Using anthropomorphic explanations is a common feature of the octet rule framework which often leads to students talking as if atoms deliberately act to get full outer electron shells.

It has been suggested that such anthropomorphism may be either 'strong'- where the learner is offering an explanation they find convincing – or 'weak' if they are using language metaphorically, just as a figure of speech.

In this case, when Lovesh's use of the notion of 'wants' was queried he was able to shift to a different language register in terms of the action of physics forces – the electron being attracted elsewhere. Lovesh had clearly acquired an appropriate way of thinking about the interactions between atoms, but his spontaneous explanation was couched in anthropomorphic terms. Although in this case the anthropomorphism was of a weak form, the habitual use of this kind of language may come to stand in place of offering a scientifically acceptable account.