Resistance is how much something is being slowed down

Image by Dimitris Doukas from Pixabay 

"Resistance is how much something is being slowed down or is stopped going round"

Adrian was a participant in the Understanding Science Project. When I interviewed him in Y12 when he was studying Advanced level physics he told me that "We have looked at resistance and conductance and the formulas that go with them". However, when asked about the formula, he suggested, without conviction, that "resistance is current over voltage". So, I asked him how he might go about explaining resistance to a younger student:

We will come back to the formula in a minute then, so let us say you had a younger brother or sister who hasn’t done much physics.

Yes.

And doesn’t do, doesn’t like maths, doesn’t like formulas.

Okay.

So what does it mean though? Why is it important? What’s resistance about?

Erm – I would say it was how much something is being slowed down, or erm how much it is being stopped going round. If it is in electric¬… electricity then it is in a circuit. If it’s in like the wide open range of things it's like erm how resistant is something if you push it? How much force does it give back?

So Adrian was aware of electrical resistance, and also aware of resistance in the context of mechanics.

Oh I see, so, erm if I asked you to push that table over there

Yes.

There might be resistance to that?

Yes.

And that’s different to if we were talking about meters and wires and things?

Yes.

Are they similar in some way?

They have got the same name. {laughs}

Got the same name, okay.

They probably are similar. I've never really thought about it.

So although Adrian associated electrical resistance with 'resistance' in mechanical situations, the similarity between the two types of resistance seemed primarily due to the use of the same linguistic label. This was despite him describing the two forms of resistance in similar terms – "how much something is being slowed down… how much it is being stopped going round" cf. "how resistant is something if you push it".

To a physicist, a property such as resistance should be defined precisely, and therefore preferably mathematically – and so operationally in the sense that there is no ambiguity in how it would be measured. However when students are learning, definitions and formulae may be abstract and have little meaning or connection to experience, so qualitative understanding is important. Students' initial suggestions of what technical terms mean when they first learn about them may be vague and flawed, but if this is linked to a feeling for the concept this may ultimately be a better starting point than a formula which cannot be interpreted meaningfully – as seemed to be the case with Adrian.

Arguably, understanding a relationship in qualitative terms can support later formalising the relationship in mathematical terms, whereas trying to learn a formulae by rote may lead to misremembering and algorithmic application (and so, for example, not noticing when non-feasible results are calculated).

Adrian's suggestion that resistance might be"how resistant is something if you push it? How much force does it give back?" presumably linked to his own experiences of pushing and pulling objects around. However, it seemed to confuse notions of inertia and reaction force (as well as possibly frictional forces). If Adrian were to push with a force of 100N on the wall of a building, a puck on an ice rink, or on a sledge on gravel the reaction force would be 100N in each case (cf. Newton's third law) – although the subjective experience of resistance would be very different in the different situations – as would the outcome on the object pushed.

In these situations it may be difficult for a teacher to know if a vague or confused description reflects conceptual confusion (and/)or limited expression. Yet, students need time and opportunities to be able to explore concepts in their own terms to link the abstract scientific ideas with the 'spontaneous conceptions' they have developed based on their own experiences of acting in the world.

The teacher should offer feedback, and model clear language, but needs to recognise that understanding abstract scientific ideas takes time. After all, Aristotle would be considered to have alternative conceptions of mechanics by comparison with today's science, but Aristotle was clearly highly intelligent and gave the matter a lot of thought!

After this there was extended discussion on the way resistance related to current and voltage, following Arian's comment that resistance is current over voltage. As part of this he was asked about ⚗︎ an example where different voltages were needed in different circuits to allow the same current to flow. ⚗︎ He suggested that the circuit with the higher resistance would be the one where "there is more voltage being put in, if you like, to the circuit, and you are getting less current flowing in, and therefore resistance must be more to stop the rest of that".

Adrian's way of talking about the current in the circuits did not seem to reflect a view of current as driven by a given p.d. across a circuit and limited by a certain resistance, but almost as a fixed potential flow, some of which would be permitted to pass, but some of which would be stopped by the resistance ("how much it is being stopped going round", "resistance … to stop the rest of that"). Yet, as suggested above, it can take time, and opportunities for exploration and discussion, for students' concepts and ways of talking about them to mature towards canonical science.

That Adrian could talk of "more voltage…less current…therefore resistance must be more" seemed promising, although ⚗︎ Adrian could not relate his qualitative description to the mathematical representation of the formula. ⚗︎


The brain thinks: grow more fur

The body senses that it's cold, and the brain thinks how is it going to make the body warmer?

Keith S. Taber

Image by Couleur from Pixabay 

Bert was a participant in the Understanding Science Project. In Y11 he reported that he had been studying about the environment in biology, and done some work on adaptation. he gave a number of examples of how animals were adapted to their environment. One of these examples was the polar bear.

our homework we did about adapting, like how polar bears adapt to their environments, and camels….

And so a polar bear has adapted to the environment?

Yeah.

So how has a polar bear adapted to the environment?

Erm, things like it has white fur for camouflage so the prey don't see it coming up. Large feet to spread out its weight when it's going over like ice. Yeah, thick fur to keep the body heat insulated.

Bert gave a number of other examples, including dogs that were bred with particular characteristics, although he explained this in terms of inheritance of acquired characteristics: suggesting that dogs that have been taught over and over to retrieve have puppies that automatically have already got that sense. Bert realised that this example was due to the work of human breeders, and took the polar bear as an example of a creature that had adapted to its environment.

Yeah, so how does adaption take place then? You've got a number of examples there, bears and dogs and camels and people. So how does adaption take place?

I don't know. It may have something to do with negative feedback.

That's impressive.

Like you have like, you always get like, you always get feedback, like in the body to release less insulin and stuff like that. So in time people like or whatever, organisms, learn to adapt to that. Because if it happens a lot that makes a feedback then it comes, yeah then they just learn to do that.

Okay. Give me an example of that. I'm trying to link it up in my head.

Okay, like the polar bear, like I don't know. It may have started off just like every other bear, but because it was put in that environment, like all the time the body was telling it to grow more fur and things like that, because it was so cold. So after a while it just adapted to, you know, always having fur instead of, you know, like dogs shed hair in the summer and stuff. But like if it was always then they'd just learn to keep shedding that hair.

So if it was an ordinary bear, not a polar bear, and you stuck it in the Arctic, it would get cold?

Yeah.

But you say the body tells it to grow more fur?

Erm, yeah.

How does that work?

I'm not sure, it just … I don't know. Like, erm, like the body senses that it's cold, it goes to the brain, and the brain thinks, well how is it going to go against that, you know, make the body warmer. And so it kind of, you know, it gives these things.

Is that an example of feedback?

Yes.

So Bert seemed to have notion of (it not the term) homoeostasis, that allowed control of such things as levels of insulin. He recognised thus was based on negative feedback – when some problematic condition was recognised (e.g. being too cold) this would trigger a response (e.g., more insulation)to bring about a countering change.

However, in Bert's model, the mechanism was not automatic. Rather it depended upon conscious deliberation: "the brain thinks, well how is it going to …make the body warmer". Bert thought that this process which initially was based on deliberation then became automatic over many generations.

This seems to assume that bears think in similar terms to humans, that they identify a problem and reason a way through. This might be considered an example of anthropomorphism, something that is very common in student (indeed human) thinking. To what extent it may be reasonable to assign this kind of conscious reasoning to bears is an open question.

However there was a flaws in the process described by Bert that he might have spotted himself. This model suggested that once the bear had become aware of the issue, and the needs to address, it would be able to grow its fur accordingly. That is, as a matter of will. Bert would have been aware that he is able to control some aspects of his body voluntarily (e.g., to raise his arm), but he cannot will his hair to grow at a different rate.

Of course, it may be countered that I am guilty of a kind of anthropomorphism-in-reverse: Bert is not a bear, but rather a human who does not need to control hair growth according to environment. So, just because Bert cannot consciously control his own hair growth, this need not imply the same is true for a bear. However, Bert also used the example of insulin levels, very relevant to humans, and he would presumably be aware that insulin release is controlled in his own body without his conscious intervention.

As often happens in interviewing students (or human conversations more generally) time to reflect on the exchange raises ideas one did not consider at the time, that one would like to be able to to text out by asking further questions. If things that were once deliberate become instinctive over time, then it is not unreasonable in principle to suggest things that are automatic now (adjusting insulin levels to control blood glucose levels) may have once been deliberate.

After all, people can control insulin levels to some extent by choosing to eat a different diet. And indeed people can learn biofeedback relaxation techniques that can have an effect on such variables as blood pressure, and some diabetics have used such techniques to reduce their need for medical insulin. So, did Bert think that people had once consciously controlled insulin levels, but over generations this has become automatic?

In some ways this does not seem a very likely or promising idea – but that is a judgement made from a reasonably high level of science knowledge. It is important to encourage students to use their imaginations and suggest ideas as that is an important aspect of how science woks. Most scientific conjectures are ultimately wrong, but they may still be useful tools for moving science on. In the same way, learners' flawed ideas, if explored carefully, may often be useful tools for learning. At the time of the interview, I felt Bert had not really thought his scheme through. That may well have been so, but there may have been more coherence and reflection behind his comments than I realised at the time.

In ionic bonding, they both want to get full outer shells

Keith S. Taber

Mohammed was a participant in the Understanding Science Project. When interviewed in the first term of his upper secondary (GCSE) science course (in Y10), he told me he had been learning about ionic bonding in one of his science classes. Mohammed had quite a clear idea about ionic bonding, which he described in terms of the interactions of two atoms:

And you said in chemistry you've been doing about electron arrangements [electronic configurations], and ionic bonding.

Yeah.

So what's ionic bonding, then?

Ionic bonding is when, like let's say, a sodium atom and take a chlorine atom, which make salt if they react. What happens is – the sodium atom has one electron on its outer shell, and the chlorine atom has seven, now they both want to get full outer shells, so if I er let's say move the electron from the sodium to the chlorine, then the chlorine would have a full outer shell because it would have eight, and because it's lost that shell the sodium will also have eight.

This account of ionic bonding is a common one, although it is inconsistent with the scientific model. A key problem here is that the driving force for bond formation is seen in terms of atoms wanting to complete their electron shells (the 'full shells explanatory principle'). Mohammed's explanation here uses anthropomorphism, as it treats the individual atoms as though they are alive and sentient, acting to meet their own needs – "they both want to get full outer shells".

When Mohammed was probed, he related a full outer shell to atomic stability (a central feature of the full shells explanatory principle).

Okay. How do you know they want full outer shells?

Because it makes them more stable.

Why does it make them more stable?

(pause, c.1 s)

Erm. (Why do electrons?*) (* sotto voce – apparently said to himself)

(pause, c.2s)

Er, because they don't react as much with other elements if they have a full outer shell.

I see.

They don't react.

There is an interesting contrast here between Mohammed's instant response that full shells "makes them more stable", and the long pause as he thought about why this might be so.

His response reflects something quite common in students' explanations n that a student asked why X is the case may respond by explaining why they think X is the case. (That is, as if an appropriate answer to the question "why is it raining so heavily?" would be "because I got soaked through getting here", i.e. actually responding to the question "how do you know that it is raining heavily?")

Such responses seem to be logically flawed, but of course may be a mis-perception of the question being asked (so the learner is answering the question they thought was asked), or (possibly the case here) substituting a response to a related question as a strategy adopted when aware that one cannot provide a satisfactory response to the actual question posed.

The anthropomorphic aspect of his earlier answer was probed:

How do the atoms know that they need to get a full outer shell, they want to get a full outer shell? Do they know about this stability thing?

Not really.

No?

It's just what happens.

Oh, I see, it's just what happens?

Yeah.

So although Mohammed used an anthropomorphic explanation, it seemed he did not mean this literally. (It may seem strange to suggest a 14 year old might consider atoms alive and sentient, but research suggests this is sometimes so!) This has been described as weak anthropomorphism, where the anthropomorphism is only used as a figure of speech. However, such language can act as a grounded learning impediment because if it becomes habitual it can stand in place of a scientific explanation (thus giving no reason to seek a canonical scientific understanding).

I went on to ask Mohammed about the formation of salt in the process he had described.

Iron is too heavy to completely evaporate

Some molten iron would evaporate but not all of it, 'cause it's not like water and it's more heavy

Keith S. Taber

Sophia was a participant in the Understanding Science Project. In her first interview near the start of Y7, Sophia told me that she had learnt "about the particles…all the things that make – the actual thing, make them a solid, and make them a gas and make them a liquid" (i.e. the states of matter). All solids had particles, including (as examples) ice and an iron clamp stand. There would be the same particles in the ice as the iron.

"because they are a solid, but they can change , 'cause if erm they melted they would be a liquid so they would have different particles in…Well they are still the same particles but they are just changing the way they act".

Sophia's suggestion that particles in ice and the iron were the same types of particles as both were solid seems to be 'carving nature' at the wrong joints – that is in this model the particles in ice and (solid) iron would be of one type, whilst those of water and liquid iron would be of another type (that is she had an alternative ontology). Sophia quickly corrected this, so it is not clear if this reflected some intuitive idea or was just 'a slip of tongue'.

According to Sophia the ice could be melted "with something that's hot, like a candle" but for the iron "you need more heat, 'cause it's more, it's a lot more stronger…because it's got more particles pushed together".

Sophia's explanation suggested a causal path (right-hand side) quite different from a canonical causal path (left-hand side)

Strictly the difference is more about the strength of the interactions between particles, than how many were pushed together – although strong bonding forces would tend (all other factors being equal) to lead to particles being bound more tightly and being closer. We might argue here that Sophia seemed to confuse cause and effect – that a higher density of particles was an effect of strong bonding, which would also mean more energy was needed to overcome that bonding. (However, we should also be aware that when students use 'because' (which formally implies causality) they sometimes mean little more than 'is associated with'.)

If the water obtained from melting ice was heated more "it will evaporate into the sky". However, if the molten iron was heated Sophia thought that "some of it would evaporate but not all of it, 'cause it's not like water and it's more heavy". She thought only "a little" of the iron would evaporate to give iron vapour:

"No, I think that water all of it goes, but other material, other liquids some of it will go, not all of it". The rest "if it's cold enough, it will go back into a solid, but if not it really just stays as a liquid".

Sophia's idea that no matter how much liquid iron was heated it would not completely evaporate so some would remain liquid, which seemed to be linked in her mind to its density, seems to be evidence of an alternative conception. Students may not expect that something as (apparently) inherently solid as iron could evaporate (everyday experience may act as a grounded learning impediment), and so may not readily accept that the basic model of the states of matter and changes of state (i.e., a heated liquid will evaporate or boil) can apply to something like iron. Sophia seemed to have formed a hybrid conception – applying the taught model, but with a modification reflecting the counter-intuitive notion that iron could become a vapour.

Conceptual change can be a slow progress, although hybrid conceptions may be 'stepping stones' towards more scientific understandings. However, when I spoke to Sophia in Y8 she did not seem to have progressed further. [See 'Liquid iron stays a liquid when heated'.]

So who's not a clever little virus then?

The COVID-19 virus is not a clever or sneaky virus (but it is not dumb either) 1

Keith S. Taber

Image by Syaibatul Hamdi from Pixabay 

One of the things I have noticed in recent news reports about the current pandemic is the tendency to justify our susceptibility to the COVID-19 coronavirus by praising the virus. It is an intelligent and sneaky foe, and so we have to outwit it.

But no, it is not. It is a virus. It's a tiny collection of nucleic material packaged in a way that it can get into the cells which contain the chemical resources required for the virus to replicate. It is well suited to this, but there is nothing intelligent about the behaviour. (The virus does not enter the cell to reproduce any more than an ice cube melts to become water; or a hot cup of coffee radiates energy to cool down; or a toddler trips over to graze its knee rather than because gravity acts on it.) The virus is not clever nor sneaky. That would suggest it can adapt its behaviour, after reflecting upon feedback from its interactions with the environment. It cannot. Over generations viruses change – but with a lot of variations that fail to replicate (the thick ones in the family?)

Yet any quick internet search finds references to the claimed intellectual capacities of these deadly foes. Now of course an internet search can find references to virtually anything – but I am referring to sites we might expect to be authoritative, or at least well-informed. And this is not just a matter of a hasty response to the current public health emergency as it is not just COVID 19, but, it seems, viruses generally that are considered intellectually superior.

Those smart little viruses

The site Vaccines Today has a headline in a posting from 2014, that "Viruses are 'smart', so we must be smarter", basing its claims on a lecture by Colin Russell, Royal Society University Research Fellow at Cambridge University. It reports that "Dr Russell says understanding how 'clever' viruses are can help us to outsmart them". (At least there are 'scare quotes' in some of these examples.)

An article from 2002 in an on-line journal has the title "The contest between a clever virus and a facultatively clever host". Now I have moaned about the standard of many new internet journals, but this is the Journal of the Royal Society of Medicine, and the article is in volume 95, so I think it is safe to apply the descriptor 'well-established' to this journal.

A headline in Science news for Students (published by Society for Science & the Public) from 2016 reads "Sneaky! Virus sickens plants, but helps them multiply". I am sure it would not take long to find many other examples. An article in Science refers to a "nasty flu virus".

Sneaky viruses

COVID-19 is a sneaky virus according to a doctor writing in the Annals of Internal Medicine. Quite a few viruses seem to be sneaky – the the human papillomavirus is according to an article in the American Journal of Bioethics. The World Health Organisation considers that a virus that causes swine fever, H1N1, is sneaky according to an article in Systematic Reviews in Pharmacy, something also reported by the BMJ.

There are many references in the literature to clever viruses, such as Epstein‐Barr virus according to a piece in the American Journal of Transplantation. The Hepatitis C virus is clever according to an article in Clinical Therapeutics.

Science communication as making the unfamiliar, familiar

Science communication is a bit like teaching in that the purpose of communication is often to be informative (rather than say, social cohesion, like a lot of everyday conversation {and, by the way,it was another beautiful day here in Cambridgeshire today, blue sky – was it nice where you are?}) and indeed to make the unfamiliar, familiar. Sometimes we can make the unfamiliar familiar by showing people the unfamiliar and pointing it out. 'This is a conical flask'. Often, however, we cannot do that – it is hard to show someone hyperconjugation or hysteresis or a virus specimen. Then we resort to using what is familiar, and employing the usual teacher tricks of metaphor, analogy, simile, modelling, graphics, and so forth. What is familiar to us all is human behaviour, so personification is a common technique. What the virus is doing, we might suggest, is hijacking the cell's biochemical machinery, as if it is a carefully planned criminal operation.

Strong anthropomorphism and dead metaphors

This is fine as far as it goes – that is, if we use such techniques as initial pedagogic steps, as starting points to develop scientific understanding. But often the subsequent stage does not happen. Perhaps that is why there are so many dead metaphors in the language – words introduced as metaphors, which over time have simple come to be take on a new literal meaning. Science does its fair share of borrowing – as with charge (when filling a musket or canon). Dead metaphors are dead (that is metaphorical, of course, they were never actually alive) because we simply fail to notice them as metaphors any more.

There are probably just as many references to 'clever viruses' referring to computer viruses as to microbes – which is interesting as computer viruses were once only viruses metaphorically, but are now accepted as being another type of virus. They have become viruses by custom and practice, and social agreement.

Whoever decided to first refer to the covalent bond in terms of sharing presumably did not mean this in the usual social sense, but the term has stuck. The problem in education (and so, presumably, public communication of science) is that once people think they have an understanding, an explanation that works for them, they will no longer seek a more scientific explanation.

So if the teacher suggests an atom is looking for another electron (a weak form of anthropomorphism, clearly not meant to be taken too seriously – atoms are not entities able to look for anything) then there is a risk that students think they know what is going on, and so never seek any further explanation. Weak anthropomorphism becomes strong anthropomorphism: the atom (or virus) behaves like a person because it has needs and desires just like anyone else.

Image by Tumisu from Pixabay 

Why does it matter?

Perhaps in our current situation this is not that important – the public health emergency is a more urgent issue than the public understanding of the science. But it does matter in the long term. Viruses are not clever – they have evolved over billions of years, and a great many less successful iterations are no longer with us. The reason it matters is because evolution is often not well understood.

As an article in Evolution News and Science Today (a title that surely suggests a serious science periodical about evolution) tells us again that "Viruses are, to all appearances, very clever little machines" and asks "do they give evidence of intelligent design" (that is, rather than Darwinian natural selection, do they show evidence of having an intelligent designer?) After exploring some serious aspects of the science of viruses, the article concludes: "So it seems that viruses are intelligently designed" – that is, a position at odds with the scientific understanding that is virtually a consensus view based on current knowledge. Canonical science suggests that natural processes are able to explain evolution. But these viruses are so clever they must surely have been designed (Borg technology, perhaps?)

This is why I worry when I hear that viruses are these intelligent, deliberate agents that are our foes in some form of biological warfare. It is a dangerous way of thinking. So, I'm concerned when I read, for example, that the cytomegalovirus is not just a clever virus but a very clever virus. Indeed, according to an article in Cell Host & Microbe "CMV is a very clever virus that knows more about the host immune system and cell biology than we do". Hm.

(Read about 'anthropomorphism')

Footnote:

1. The subheading was amended on 4th October 2021, after it was quite rightly pointed out to me that the original version, "COVID-19 is not a clever or sneaky virus (but it is not dumb either)", incorrectly conflated the disease with the virus.

Peter and Patricia Pigeon set up house together

Keith S. Taber

In my work I've spent a lot of time analysing the things learners say about science topics in order to characterise their thinking. Although this work is meant to have an ethnographic feel, and to be ideographic (valuing the thinking of the individual in its own terms), there is always an underlying normative aspect: that is, inevitably there is a question of how well learners' conceptualisations match target curricular knowledge and canonical science. We all have intuitions which are at odd with scientific accounts of the world, and we all develop alternative conceptions – notions which are inconsistent with canonical concepts.

Peter and Patricia started seeing each other at this local fence earlier this year.

Soon passion got too much for them and they (publicly) consummated their relationship on this very fence (some birds have no shame).

It is easier to spot this in others (you think what?!) than it is in ourselves. But occasionally you may reflect on the way you think about a topic and recognise aberrations in your own thinking. One of these examples in my own thinking relates to bird's nests. I know that birds build nests as a place to lay and hatch eggs. Using the ground would be very dangerous due to vulnerability to predators. Simply using branches would be precarious – especially as eggs are hardly best shaped to be balanced on a tree branch. I also know that once the young are fledged have fled the nest, it has outlived its purposes.

They quite liked the area, and decided to look for a place nearby.

Soon they had identified a nice place to build their new home in some nearby ivy.

Yet it was only a few years ago – I think when came across discarded nests in the garden – that I released I have carried around with me since quite young the metaphor that a nest is a bird's home – it is where the bird family lives. Perhaps I made up that idea as a child. More likely I was told that or heard it on a children's programme. If so, perhaps it was not meant to be taken too literally – it was just meant to compare the nest with something that would be familiar to a child. But I think well into adulthood I had this notion of that birds lived in trees – not explicitly, but insidiously in the back of my mind: as if a bird had a home in a tree and that was where it was based – unless and until perhaps it could afford to move upmarket to a better tree!

They decided to do their own build, which involved Peter in the tiring work of going out to get building materials.

Peter set about the serious business of setting up their new dream home.

Peter was quite confident, and would often return which rather large pieces of nesting material.

"Oh, that seems to have got caught up."

Over time Peter started to be more realistic in selecting material he could get through the front door.

Although I was well aware (at one level) that birds do not have permanent family homes to which they return at the end of a hard day's exertions, I also had this nest=home identity at the 'back of my mind' giving the impression that this is how birds live. As humans we take for granted certain kinds of forms of life (perhaps home, work, family, etc.), and these act as default templates for understanding the world. This makes anthropomorphising nature seem quite a natural thing to do.

Peter heading out to work, again.

And getting home with his latest acquisition – landing on his feet.

Watching this process develop was quite entertaining. Peter would spend ages pecking at pieces of plant that were firmly fixed in the ground, ignoring nearby loose material. His early attempts to take material back to the nest were troubled. He would take material that was too large to get through the foliage into the secluded nesting area. He would also fly close to 'home' and then abort as found he could not land with his goods. However, he soon seemed to learn what worked, and developed a technique of first flying onto the fence or the roof the ivy was growing on to, so he would not be flying up to the nesting place from the ground in a single stage.

The sequences below show the pigeon flying out from, and back to, the nest.

The jumping/diving action is clear in the sequence below:

The fourth and fifth frames in the sequence below show the 'landing gear' coming into position (reminiscent of a bird of prey taking its prey):

The landing action is also clear near the end of the sequence below:

Another take off. catching the first few flaps:

My favourite sequence – quite extended for my hand-held camera work! – in the 11th frame our pigeon is just entering frame right. But notice a sparrow sitting on top of the foliage to the left. The sparrow has presumably seen/heard the much larger bird comings it way, and in the next frame can be seen to be moving its wings ready to take off. The next three frames have the sparrow heading right as the pigeon moves to the left (the sparrow is a smudge beneath the pigeon's left wing in the third of these frames), and the sparrow appears to have disappeared from view in the next, but must have been obscured by the pigeon as it seen to the right of the next frame. The sequence ends with the pigeon in landing mode.

A salt grain is a particle (but with more particles inside it)

Keith S. Taber

Sandra was a participant in the Understanding Science Project. When I interviewed Sandra about her science lessons in Y7 she told me "I've done changing state, burning, and we're doing electricity at the moment". She talked about burning as being a chemical change, and when asked for another example told me dissolving was a chemical change, as when salt was dissolved it was not possible to turn it back to give salt grains of the same size. She talk me that is the water was boiled off from salt solution "you'd have the same [amount of salt], but there would just be more particles, but they'd be smaller".

As Sandra had referred to had referred to the salt 'particles' being smaller,(as as she had told me she had been studying 'changing state') I wondered if she had bee taught about the particle model of matter

So the salt's got particles. The salt comes as particles, does it?
Yeah.
Do other things come as particles?
Everything has particles in it.
Everything has particles?
Yeah.
But with salt, you can get larger particles, or smaller particles?
Well, most things. Like it will have like thousands and thousands of particles inside it.
So these are other types of particles, are they?
Mm.

So although Sandra had referred to the smaller salt grains as being "smaller particles", it seemed he was aware that 'particles' could also refer to something other than the visible grains. Everything had particles in. Although salt particles (grains?) could be different sizes, it (any salt grain?) would have a great number ("like thousands and thousands") of particles (not grains – quanticles perhaps) inside it. So it seemed Sandra was aware of the possible ambiguity here, that there were small 'particles' of some materials, but all materials (or, at least, "most things") were made up of a great many 'particles' that were very much smaller.

So if you look at the salt, you can see there's tiny little grains?
Yeah.
But that's not particles then?
Well it sort of is, but you've got more particles inside that.

"It sort of is" could be taken to mean that the grains are 'a kind of particle' in a sense, but clearly not the type of particles that were inside everything. She seemed to appreciate that these were two different types of particle. However, Sandra was not entirely clear about that:

So there's two types are of particles, are there?
I don't know.
Particles within particles?
Yeah.
Something like that, is it?
Yeah.
But everything's got particles has it, even if you can't see them?
Yeah.
So if you dissolved your salt in water, would the water have particles?
Ye:ah.
'cause I've seen water, and I've never seen any particles in the water.
The part¬, you can't actually see particles.
Why not?
Because they're too small.
Things can be too small to see?
Yeah.
Oh amazing. So what can you see when you look at water, then? 'cause you see something, don't you?
You can see – what the particles make up.
Ah, I see, but not the individual particles?
No.

Sandra's understanding here seems quite strong – the particles that are inside everything (quanticles) were too small to be seen, and we could only see "what the particles make up". That is, she, to some extent at least, appreciated the emergence of new properties when very large numbers of particles that were individually too small to see were collected together.

Despite this, Sandra's learning was clearly not helped by the associations of the word 'particle'. Sandra may have been taught about submicroscopic particles outside of direct experience, but she already thought of small visible objects like salt grains as 'particles'. This seems to be quite common – science borrows a familiar term, particle, and uses it to label something unfamiliar.

We can see this as extending the usual everyday range of meaning of 'particle' to also include much smaller examples that cannot be perceived, or perhaps as a scientific metaphor – that quanticles are called particles because they are in some ways like the grains and specks that we usually think of as being very small particles. Either way, the choice of a term with an existing meaning to label something that is in some ways quite similar (small bits of matter) but in other ways very different ('particles' without definite sizes/volumes or actual edges/surfaces) can confuse students. It can act as an associative learning impediment if students transfer the properties of familiar particles to the submicroscopic entities of 'particle' theory.

Dissolving salt is a chemical change as you cannot turn it back

Dissolving salt is a chemical change as you cannot turn it back as it was before

Keith S. Taber

Sandra was a participant in the Understanding Science Project. When I interviewed Sandra about her science lessons in Y7 she told me "I've done changing state, burning, and we're doing electricity at the moment". I asked her about burning:

Well, tell me a bit about burning then. What's burning then?
It's just when something gets set on fire, and turns into ash, or – has a chemical change, whatever.
Has a chemical change: what's a chemical change?
It means something has changed into something else and you can't turn it back.
Oh I see. So burning would be an example of that.
Yeah.

So far this seemed to fit 'target knowledge'. However, Sandra suggested that dissolving would also be a chemical change. Dissolving is not normally considered a chemical change in school science, but a physical change, the distinction is a questionable teaching model. (Chemical change is said to involve bond breaking/making, and of course dissolving a salt does involve breaking up the ionic bonding to form solvent-solute interactions.)

Are there other examples?
Erm – dissolving.
So give me an example of something you might dissolve?
Salt.
Okay, and if you dissolve salt, you can't get it back?
Not really, not as it was before.
No. Can you get it back at all?
Sort of, you can like, erm, make the, boil the water so it turns into gas, and then you have salt, salt, salt on the, left there. Sometimes.
But you think that might not be quite the same as it was before?
No.
No. Different in some way?
Yeah
How might it be different?
Be much smaller.
Oh I see, so do you think you'd have less salt than you started with?
You'd have the same, but there would just be more particles, but they'd be smaller.
Ah, so instead of having quite large grains you might have lots of small grains
Yeah.

So Sandra was clear that one could dissolve salt, and then reclaim the same amount of salt by removing the solvent (water) which from the canonical perspective would mean the change was reversible – a criterion of a physical change.

Yet Sandra also thought that although the amount of salt would be conserved, the salt would be in a different form – it would have different grain size. (Indeed, if the water was boiled off, rather than left to evaporate, it might indeed be produced as very small crystals.)

So, Sandra seemed to have a fairly good understanding of the process, but because of the way she interpreted the criterion of a chemical change, something [salt] has changed into something else [solution] and you can't turn it back [with the same granularity]. Large grains will have changed into small grains – so this would, to Sandra's mind, be a chemical change.

Science teachers deserve a great deal of public appreciation. A teacher can teach something so that a student learns it well – and yet still form an alternative conception – here because of the inherent ambiguity in the ways language is used and understood. Sandra's interpretation – if you start off with large particles and end up with smaller particles then you have not turned it back – was a reasonable interpretation of what she had learnt. (It also transpired there was ambiguity in quite what was meant by particles.)

Gases in bottles try to escape; liquids try to take the shape

Keith S. Taber

Bill was a participant in the Understanding Science Project. Bill, a year 7 (Y7) student, told me that:

"Gases, they try and fill whole room, they don't, like liquids, they stay at the bottom of the container, but gases go fill, do everywhere and fill, try and fill the whole thing." 

When asked "Why do they try and do that?" he replied that "Erm, I'm not sure." I suggested some things that Bill might 'try' to do, and asked "so when the gas tries to fill the room, is it the same sort of thing, do we mean the same sort of thing by the word 'try'?" Bill appreciated the difference, and recanted the use of 'try':

"No, I think I phrased that wrong, I meant that it fills the whole area, 'cause it can expand."

However, it soon became clear that Bill's use of the term came easily, despite accepting that it was misleading:

Okay. So it's not, the gas does not come in and say, 'hm, I think I'll fill the whole room', and try and do it?

No, it just does it.

It just does it?

It tries to get out of everywhere, so if you put it in the bottle, it would be trying to get out.

And later:

…are there particles in other things?:

liquids, yeah there is particles in everything, but liquids the particles move quite a lot because, well they have, oh we did this this [in the most recent] lesson, erm, they have energy to move, so they try and move away, but their particles are quite close together.

What about the gases?

The gases, their particles try to stay as far away from each other as possible.

Why is that? Don't they like each other?

No, it's because they are trying to spread out into the whole room.

And later:

…and you said that liquids contain particles? Did you say they move, what did you say about the particles in liquids?

Er, they're quite, they're further apart, than the ones in erm solids, so they erm, they try and take the shape, they move away, but the volume of the water doesn't change. It just moves.

What about the particles in the gas?

The gas, they're really, they're far apart and they try and expand.

Bill had only learnt about particles recently in science, but seemed to have already developed a habitual way of talking about them with anthropomorphism: as if they were conscious agents that strived to fill rooms, escape bottles, and take up the shape of containers.

To some extent this is surely a lack of familiarity with objects that can have inherent motion without having an external cause (like a projectile) or internal purposes (like animals) and/or having a suitable language for talking about the world of molecular level particles ('quanticles'). Such habits may be harmless, but it is a concern if such habitual ways of talking and thinking later come to stand for more scientific descriptions and explanations of natural processes (what has been called strong anthropomorphism).

Bill's lack of a suitable language for talking about particle actions could act as a learning impediment (a deficiency learning impediment), impeding desired learning.

The Sun would pull more on the Earth…

Bert's understanding of the reciprocal nature of forces 


Keith S. Taber


Bert was a participant in the Understanding Science Project. A key idea in school physics is that forces occur in pairs, when two bodies exert an equal magnitude force upon each other (as required by Newton's third law). However, this seems counter intuitive to pupils, who may expect that a larger (more massive, or greater charge etc.) object would exert a greater force on a smaller body than vice versa. In physics a distinction is made between the forces (always equal) and their effects (which depend upon the force applied, and the mass of the object being acted upon). This distinction is not always made by students.

When in Y11, Bert offered an example of one of the common alternative conceptions found among students – that the larger body will exert more force:

What about the Earth going round the Sun, that's an orbit as well is it?

Yeah.

So why does it go round?

Why does it go round?

Yeah.

Erm because erm, well one is the gravity of it pulling and the other is, I'm not so sure what the other force is.

That's gravity of what?

The Sun.

So the gravity of the Sun pulling on the Earth?

Yeah.

Do you think the Earth pulls on the Sun?

Yeah, I guess but not strongly enough to move the Sun. Because if there's an object with a small amount of mass then it's not going to give off as much pull as something ten times bigger as it. So the Earth would pull more on the Sun, I mean the Sun would pull more on the Earth.

Whereas the physics perspective is that a force is an interaction between bodies, Bert talks as though a force is something that emanates from one body to another ("give off … pull"), a way of talking quite common among students applying their intuitive understanding of force.

Many students conflate the force acting on a body, and its effect (the acceleration produced) – so here the Sun and Earth are subject to the same force, but the earth is much less massive so will accelerate much more subject to that force than the Sun would. (The Sun's acceleration would actually depend on the net force acting on it considering the various bodies in orbit around it.)

Common experience tells us that in interactions between contrasting bodies (e.g., consider a fly on a windshield) the larger object has more effect, which may seem naturally to mean it applies more force (how much force can the tiny fly impart? – surely the car must apply more force to the fly?) So there is an intuition here, which can act as a grounded learning impediment to learning the physics formalism.




Are plants solid?

Keith S. Taber

Image by Martin Winkler from Pixabay 

Bill was a participant in the Understanding Science Project. Bill (a Year 7 pupil) told me Bill talked about how in his primary school he had studied "a lot about plants, and – inside them, how they produce their own food", and how "inside, it has leaves, inside it, there is chlorophyll, which stores [sic] sunlight, and then it uses that sunlight to produce its food."

Bill had been talking to me about particles, and I asked if plants had anything to do with particles:

Well in the plant, there is particles….'cause it's a solid…. inside the stem is, 'cause going up the stem there would be water, so that's a liquid. And, it also uses oxygen, which is a gas, to make its food, so. I think so.

I suspect that Bill's reference to the plant being "a solid" would seem unproblematic to many people, especially as Bill recognised the presence of water (a liquid) and oxygen (a gas) as well.

There is however a potential issue here. The model of states of matter and changes of state taught in school strictly refers to reasonably pure samples of particular substances (so water is a liquid at normal temperatures, and oxygen is a gas – although strictly speaking the air in which it is found is a mixture which is not best considered 'a gas'). A plant (like an animal) is a complex structure which cannot be considered as a solid (and indeed living things were separated out in distinct substances, water would make up much of the content).

If the scientific model of solids, liquids and gases is applied beyond the range of individual substances, this is sometimes unproblematic. To consider the air as a gas, or the sea as a liquid, is not usually a problem as it is clear what this means in everyday discourse. But of course it is not possible to find 'the' boiling point of complex mixtures such as these.

However a wooden stool is only a solid in the everyday sense, certainly not in a scientific sense, and to refer to animals or plants as solids does considerable violence to the concept. (BBC Bitesize – please note!*)

(* Read 'Thank you, BBC: I'll give you 4/5')

There are particles in everything – but maybe not chlorophyll

Keith S. Taber

Bill was a participant in the Understanding Science Project. Bill (a Year 7 pupil) told me that "solids they stay same shape and their particles only move a tiny bit". He explained that the 'particles' were "the bits that make it what it is", although "you can't see them" as "they're very, very tiny". Later he commented that "they are microscopic".

Although it is very common for such particles to be said to be 'microscopic', a better term would be 'nanoscopic'. Microscopic suggests visible under a microscope, and the particles referred to here ('quanticles') are actually submicroscopic." The term microscopic could therefore be misleading, and it is known that often when students first learn about particles in science they often have in mind small grains of powder or dust.

Bill explained that "there is particles in everything". Bill was able to talk a lot about particles in solids, liquid and gases and explain what happened during melting.

Later in the same interview Bill talked about how in his primary school he had studied "a lot about plants, and – inside them, how they produce their own food", and how "inside, it has leaves, inside it, there is chlorophyll, which stores [sic] sunlight, and then it uses that sunlight to produce its food."

I asked Bill if plants had anything to do with particles:

Well in the plant, there is particles….'cause it's a solid…. inside the stem is, 'cause going up the stem there would be water, so that's a liquid. And, it also uses oxygen, which is a gas, to make its food, so. I think so.

Bill explained that "…in the leaves it is chlorophyll which is a green substance, so that would make, give it its colour".

Do you think chlorophyll is made of particles?

Hm, don't know.

So it seemed that although 'there is particles in everything', Bill did not seem to feel this meant that he could apply the particle idea to all substances. This could be an example of a fragmentation learning impediment: that is, where learning in one area is not recognised as relevant in studying other subjects or topics.