How to avoid birds of prey

…by taking refuge in the neutral zone


Keith S. Taber


Fact is said to be stranger than (science) fiction

Regular viewers of Star Trek may be under the impression that it is dangerous to enter the neutral zone between the territories claimed by the United Federation of Planets and that of the Romulan Empire in case any incursion results in an attack by a Romulan Bird of Prey.


A bird of prey (with its prey?)
(Image by Thomas Marrone, used by permission – full-size version at the source site here)


However, back here on earth, it may be that entering the neutral zone is actually a way of avoiding an attack by a bird of prey


A bird of prey (with its prey). Run rabbit, run rabbit…into the neutral zone
(Image by Ralph from Pixabay)

At least, according to the biologist Jakob von Uexküll

"All the more remarkable is the observation that a neutral zone insinuates itself between the nest and the hunting ground of many raptors, a zone in which they seize no prey at all. Ornithologists must be correct in their assumption that this organisation of the environment was made by Nature in order to keep the raptors from seizing their own young. If, as they say, the nestling becomes a branchling and spends its days hopping from branch to branch near the parental nest, it would easily be in danger of being seized by mistake by its own parents. In this way, it can spend its days free of danger in the neutral zone of the protected area. The protected area is sought out by many songbirds as a nesting and incubation site where they can raise their young free of danger under the protection of the big predator."

Uexküll, 1934/2010

This is a very vivid presentation, but is phrased in a manner I thought deserved a little interrogation. It should, however, be pointed out that this extract is from the English edition of a book translated from the original German text (which itself was originally published almost a century ago).

A text with two authors?

Translation is a process of converting a text from one natural language to another, but every language is somewhat unique regarding its range of words and word meanings. That is, words that are often considered equivalent in different language may have somewhat different ranges of application in those languages, and different nuances. Sometimes there is no precise translation for a word, and a single word in one language may have several near-equivalents in another (Taber, 2018). Translation therefore involves interpretation and creative choices.

So, translation is a skilled art form, and not simply something that can be done well by algorithmically applying suggestions in a bilingual dictionary. A good translation of an academic text not only requires someone fluent in both languages, but also someone having a sufficient understanding of the topic to translate in the best way to convey the intended meaning rather than simply using the most directly equivalent words. A sequence of the most equivalent individual words may not give the best translation of a sentence, and indeed when translating idioms may lead to a translation with no obvious meaning in the target language. It is worth bearing in mind that any translated text has (in effect) two authors, and reflects choices made by the translator as well as the original author.

Read about the challenges of translation in research writing

I am certainly not suggesting there is anything wrong with the translation of Uexküll's text, but it should be born in mind I am commenting on the English language version of the text.

A neutral zone insinuates itself

No it does not.

The language here is surely metaphorical, as it implies a deliberate action by the neutral zone. This seems to anthropomorphise the zone as if it is a human-like actor.

Read about anthropomorphism

The zone is a space. Moreover, it is not a space that is in any way discontinuous with the other space surrounding it – it is a human conception of a region of space with imagined boundaries. The zone is not a sentient agent, so it can not insinuate itself.

Ornithologists must be correct

Science develops theoretical knowledge which is tested against empirical evidence, but is always (strictly) provisional in that it should be open to revisiting in the light of further evidence. Claims made in scientific discourse should therefore be suitable tentative. Perhaps

  • ornithologists seem to be correct in suggesting…, or
  • it seems likely that ornithologists were correct when they suggested…or even
  • at present our best understanding reflects the suggestions made by ornithologists that...

Yet a statement that ornithologists must be correct implies a level of certainty and absoluteness that seems inconsistent with a scientific claim.

Read about certainty in accounts of science

The environment was made by Nature in order to…

This phrasing seems to personify Nature as if 'she' is a person. Moreover, this (…in order to…) suggests a purpose in nature. This kind of teleological claim is often considered inappropriate in science as it suggests natural events occur according to some pre-existing plan rather than unfolding according to natural laws. 1 If we consider something happens to achieve a purpose we seem to not need to look for a mechanism in terms of (for example) forces (or entropy or natural selection or…).

Read about personification of nature

Read about teleology in science

Being seized by mistake

We can understand that it would decrease the biological fitness of a raptor to indiscriminately treat its own offspring as potential food. There are situations when animals do eat their young, but clearly any species that's members committed considerable resources to raising a small number of young (e.g., nest building, egg incubation) but were also regular consumers of those young would be at a disadvantage when it came to its long-term survival.

So, in terms of what increases a species' fitness, avoiding eating your own children would help. If seeking a good 'strategy' to have descendants, then, eating offspring would be a 'mistake'. But the scientific account is not that species, or individual members of a species, seek to deliberately adopt a strategy to have generations of descendants: rather behaviour that tends to lead to descendants is self-selecting.

Just because humans can reflect upon 'our children's children's, children', we cannot assume that other species even have the vaguest notions of descendants. (And the state of the world – pollution, deforestation, habitat destruction, nuclear arsenals, soil degradation, unsustainable use of resources, etceterastrongly suggests that even humans who can conceptualise and potentially care about their descendants have real trouble making that the basis for rational action.)


Even members of the very rare species capable of conceptualising a future for their offspring struggle to develop strategies taking the well-being of future generations into account.
(Image: cover art for 'To our children's children's children' {The Moody Blues}).


Natural selection is sometimes seen as merely a tautology as it seems to be a theory that explains the flourishing of some species (and not others) in terms that they have the qualities to flourish! But this is to examine the wrong level of explanation. Natural selection explains in general terms why it is that in a particular environment competing species will tend to survive and leave offspring to different extents. (Then within that general framework, specific arguments have to be made about why particular features or behaviours contribute to differential fitness in that ecological context.)

Particular evolved behaviours may be labelled as 'strategies' by analogy with human strategies, but this is purely a metaphor: the animal is following instincts, or sometimes learned behaviours, but is not generally following a consciously considered plan intended to lead to some desired outcome in the longer term.

But a reader is likely to read about a nestling being "in danger of being seized by mistake by its own parents" as the birds themselves making a mistake – which implies they have a deliberate plan to catch food, while excluding their own offspring from the food category, and so intended to avoid treating their offspring as prey. That is, it is implied that birds of prey are looking to avoid eating their own, but get it wrong.

Yet, surely, birds are behaving instinctively, and not conceptualising their hunting as a means of acquiring nutrition, where they should discriminate between admissible prey and young relatives. Again this seems to be anthropomorphism as it treats non-human animals as if their have mental experiences and thought processes akin to humans: "I did not mean to eat my child, I just failed to recognise her, and so made a mistake".

The protected area is sought out

Similarly, the songbirds also behave instinctively. They surely do not 'seek out' the 'protected' area around the nest of a bird of prey. There must be a sense in which they 'learn' (over many generations, perhaps) that they need not fear the raptors when they are near their own nests but it seems unlikely a songbird conceptualises any of this in a way that allows them to deliberately (that is, with deliberation) seek out the neutral zone.

In terms of natural selection, a songbird that has no fear of raptors and so does not seek to avoid or hide or flee from them would likely be at a disadvantage, and so tend to leave less offspring. Similarly, a songbird that usually avoided birds of prey, but nested in the neutral zone, would have a fitness advantage if other predators (small cats say) kept clear of the area. The bird would not have to think "hey, I know raptors are generally a hazard, but I'll be okay here as I'm close enough to be in the zone where they do not hunt", as long as the behaviour was heritable (and there was initially variation in the extent to which individuals behaved that way) – as natural selection would automatically lead to it becoming common behaviour.

(In principle, the bird could be responding to some cue in the environment that was a reliable but indirect indicator they were near a raptor nesting site. For example, perhaps building a nest very close to a location where there is a regular depositing of small bones on the ground gives an advantage, so this behaviour increases fitness and so is 'selected'.)

Under the protection of the big predator

Why are the songbirds under the protection of the raptors? Perhaps because other potential predators do not come into the neutral zone as they are vulnerable when approaching this area, even if they would be safe once inside. Again, if this is so, it surely does not reflect a conscious conceptualisation of the neutral zone.

For example, a cat that preys on small birds would experience a different 'unwelt' from the bird. A small songbird with a nest where it has young experiences the surrounding space differently to a cat (already a larger animal so experiencing the world at a different scale) that ranges over a substantial territory. Perhaps the songbird perceives the neutral zone as a distinct space, whereas to the cat it is simply an undistinguished part of a wider area where the raptors are regularly seen.

Or, perhaps, for the smaller predator, the area around the neutral zone offers too little cover to risk venturing into the zone. (Again, this does not mean a conscious thinking process along the lines "I'd be safe once I was over there, but I'm not sure I'd make it there as I could easily be seen moving between here and there", but could just be an inherited tendency to keep under cover.)

The birds of prey themselves will not take the songbirds, so the smaller birds are protected from them in the zone, but if this is simply an evolved mechanism that prevents accidental 'infanticide' this can hardly be considered as other birds being under the protection of the birds of prey. Perhaps the birds of prey do scare away other predators – but, if so, this is in no sense a desired outcome of a deliberate policy adopted by the birds of prey because they want to protect their more vulnerable neighbours.

One could understand how the birds of prey might hypothetically have evolved behaviour of not preying on smaller birds (which might include their own offspring) near their nest, but would still attack smaller predators that might threaten their own chicks. In that scenario 2, the birds of prey might have indeed protected nearby songbirds from potential predators (even if only incidentally), but this does not apply if, as Uexküll suggests, "they seize no prey at all" in the neutral zone.

Again the, 'under the protection of the big predator' seems to anthropomorphise the situation and treat the birds of prey as if they are acting deliberately to protect songbirds, and so this phrasing needs to be understood metaphorically.

Does language matter?

Uexküll's phrasing offers an engaging narrative which aids in the communication of the idea of the neutral zone to his readers. (He is skilled in making the unfamiliar familiar.) It is easier to understand an abstract idea if it seems to reflect a clear purpose or it can be understood in terms of human ways of thinking and acting, for example:

  • it is important to keep your children safe
  • it is good to look out for your neighbours

But we know that science learners readily tend to accept explanations that are teleological and/or anthropomorphic, and that sometimes (at least) this acts as an impediment to learning the scientific accounts based on natural principles and mechanisms.

Therefore it is useful for science teachers in particular to be alert to such language so they can at least check that learners are seeing beyond the metaphor and not mistaking a good story for a scientific account.


Work cited:

Notes:

1 Many people, including some scientists, do believe the world is unfolding according to a pre-ordained plan or scheme. This would normally be considered a matter of religious faith or at least a metaphysical commitment.

The usual stance taken in science ('methodological naturalism'), however, is that scientific explanations must be based on scientific principles, concepts, laws, theories, etcetera, and must not call upon any supernatural causes or explanations. This need not exclude a religious faith in some creator with a plan for the world, as long as the creator is seen to have set up the world to unfold through natural laws and mechanisms. That is, faith-based and scientific accounts and explanations may be considered to work at different levels and to be complementary.

Read more about the relationship between science and religion


2 That this does not seem to be the case might reflect how a flying bird perceives prey – if it has simply evolved to swoop upon and take any object in a certain size range {that we might explain as small enough to be taken, but not so small as not to repay the effort} that matches a certain class of movement pattern {that we might interpret as moving under its own direction and so being animate} then the option of avoiding smaller birds but taking other prey would not be available.

After all, studies show parent birds will try and feed the most simple representations of a hatchling's open beak – suggesting they do not perceive the difference between their own children and crude models of an open bird mouth.


The general form of a chick's open mouth (as shown by these hatchlings) is enough to trigger feeding behaviour in adult birds.
(Image by Tania Van den Berghen from Pixabay )

Uexküll himself reported that,

"…a very young wild duck was brought to me; it followed me every step. I had the impression that it was my boots that attracted it so, since it also ran occasionally after a black dachshund. I concluded from this that a black moving object was sufficient to replace the image of its mother…"

Uexküll, 1934/2010

(A year later, Lorentz would publish his classic work on imprinting which reported detailed studies of the same phenomenon.)


The book that EVERY physics student reads

Certainty as the Nemesis of science


Keith S. Taber


My library is in desperate need of some sorting and tidying, but I have a tendency, when entering in there and picking up a book I've not looked at for while, to dip into it rather than get organising.

So it was that I found myself re-reading the Introduction to Richard Muller's (1988) book 'Nemesis: The Death Star'. I presumably do not need to describe the book as it is so widely read (😉 see below) 1, but the Introduction was by Muller's colleague and former research supervisor Luis Alverez – a Nobel Prize winning physicist. He died the same year that Nemesis was published, so this was probably one of his last pieces of writing about science.

A claim that cannot be taken at face vlaue

In the introduction, Alverez suggests that,

"I am convinced that every student of physics will read and reread Nemesis several times, learning important lessons on each occasion, as well as having a wonderful time."

Alverez, 1988, p.xi

Now I struggle with this kind of claim.

Richard Muller's book 'Nemesis The Death Star' – has this been read and reread by every student of physics since 1988?


I have admitted here before to being rather pedantic, and although it's never been diagnosed as being on the autism spectrum, I recognise I do share some of the common traits – including a tendency to focus on literal meanings. (Perhaps that explains my regular exploration of scientific metaphors and the like on this site).

Clearly, Alverez thinks very highly of Muller, and the work reported is related to some of his own research, so there might be some quite understandable personal bias here. I am also prepared to be charitable, and read 'every student of physics' to only refer to those majoring in physics at university level rather than anyone taking a physics course.

Even so, I find this an extraordinary thing to write.

Now, I was recently asked to write something about a book I had been sent in manuscript and was quite happy to suggest that the book (on a critical but generally under-examined theme) should be required reading for all future science educators. But that is surely different: the kind of difference to be drawn between the claims:

  • all good citizens should pay their due taxes
  • all citizens do pay their due taxes

Alverez was not only suggesting that he thought all physics students would benefit from the book, but was apparently making a prediction, moreover a 'confident' prediction, that all future physics students would read the book (at least twice!) and enjoy it. The likelihood of that must have surely seemed infinitesimally small!

Had this been part of the cover blurb, I might have suspected the publisher had taken liberties with the text (which should not surprise me as publishers now seem to regularly issue contracts asking authors for the right to change their scholarly text in any way that suits them). I had wondered if that had happened, for example, when I read on the cover of a book on evolution the author's claim that today everyone accepts Darwin's theory.2 But Alverez was not writing an endorsement, but a part of the book itself. (This was not even a Foreword – but the actual Introduction to the book.)

I can only understand Alverez's claim if I understand it as a piece of rhetoric, indeed hyperbole – surely the author could not possibly really think that henceforth every physics student was going to read and reread this book about one specialised programme of research (and which was very unlikely to be directly relevant to the assignments and examinations that would given them course credit) no mater how interesting it might be? Surely, rather, he was just communicating via rhetoric that the book was so worthy of attention that in his view it would justify such a broad readership.

What's wrong with rhetoric?

I see this as an issue worth raising because (a) the statement is a knowledge claim and (b) the claim was made by a scientist in the context of part of a book reporting scientific work.

Yet it is in the nature of scientific knowledge that it is theoretical, and, strictly, provisional (always open to be revisited in the light of new evidence or ways of interpreting evidence) – and therefore scientific knowledge claims should reflect this, and not be absolute.

Read about the nature of scientific knowledge

This is one way that some accounts of science that appear in the news and other media distort the nature of science (and usually the original reports of that science as presented in research journals) by suggesting scientists have made discoveries that definitively prove some idea or other and reflect certain, absolute, knowledge

Read about scientific certainty in the media

Alverez's claim is absolute: all physics students WILL read and re-read this book.

I am not suggesting that there is no place for rhetoric in science. Scientific claims are presented in formal research reports which are organised to make an argument for the claims being presented. They are rhetorical.

Read about rhetoric in science writing

But, even if scientific claims are structured rhetorically in order to make a case, they still need to be measured, and honest, and – if they are to be considered scientific – suitably provisional.

This was perhaps [sic] exemplified when Crick and Watson, reporting what was arguably [sic] one of the most important scientific discoveries of the twentieth, if not all, centuries, pointed out that

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

Watson & Crick, 1953

They did not suggest that

"our model of D.N.A. structure definitely provides the mechanism by which genetic material IS copied and is without doubt the basis of heredity".

Counterfactual: what Crick and Watson did not publish in Nature

So, rhetoric is important in science – scientists need the ability to present a best case for the argument being made so that other scientists can readily appreciate the logic of, and strength of, some new claim. However, hyperbole involves making such extreme exaggerations that they are not expected to be taken literally, and surely has no place in scientific writing. When a scientist make an absolutist claim (e.g., "every student of physics will read and reread Nemesis several times [and have a] wonderful time") other scientists know this cannot be seen as an authentic scientific claim, and so are likely to simply disregard it as something which cannot be interpreted sensibly within the context of scientific discourse.


Sources cited
  • Alvarez, L. W. (1988). Introduction. In Nemesis: The Death Star. The story of a scientific revolution (pp. xi-xiii). Guild Publishing.
  • Watson, J. D., & Crick, F. H. C. (1953). Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 171(4356), 737-738.
  • Muller, R. (1988). Nemesis: The Death Star. The story of a scientific revolution. Guild Publishing.
  • Eldredge, N. (1995). Reinventing Darwin: The great evolutionary debate. Weidenfeld and Nicolson.

Note:


1 Just in case anyone has not read the book, it describes a theory that the earth is subject to regular mass extinction events due to the effect of a planet (Nemesis) with such a large and eccentric orbit that it only comes near the sun once every 26 million years. The publisher tells readers that

"…the Nemesis hypothesis has established itself as the only viable scientific theory to explain a bewildering variety of phenomena in fields ranging from geology to astronomy to palaeontology…"

but then the editor responsible for this claim has presumably NOT won a physics Nobel prize.

(Image by Bela Geletneky from Pixabay)


2 The back cover of 'Reinventing Darwin' (Eldredge, 1995) tells potential readers that,

"No one doubts that Darwin's theory of Evolution by Natural Selection is correct."

No matter how much one recognises natural selection and Neodarwinism as the consensus view, the present paradigm, in the scientific community, it is difficult to believe that any person on earth who has taken any interest in the matter is not aware that there are large numbers of people (albeit, only a small proportion of practising scientists) who not only 'doubt' Darwin was correct but, in many cases, are strongly committed to the idea that he was completely wrong!


A molecular Newton's cradle?

A chain reaction with no return


Keith S. Taber


Have chemist's created an atomic scale Newton's cradle?

(Image by Michelle from Pixabay)

Mimicking a Newton's cradle

I was interested to read in an issue of Chemistry World that

"Scientists in Canada have succeeded in setting off a chain of reactions in which fluorine atoms are passed between molecules tethered to a copper surface. The sequence can be repeated in alternating directions, mimicking the to-and-fro motions of a Newton's cradle."

Blow, 2022

The Chemistry World report explained that

"The team of researchers…affixed fluorocarbons to a [copper] surface by chemisorption, constructing chains of CF3 molecules terminated by a CFmolecule – up to four molecules in total….

The researchers applied an electron impulse to the foremost CF3 molecule, causing it to spit out a fluorine atom along the chain. The second CF3 absorbed this atom, but finding itself unstable, ejected its leading fluorine towards the third molecule. This in turn passed on a fluorine of its own, which was taken up by the taken up by the CF2 molecule in fourth position."

Blow, 2022

There is some interesting language here – a molecule "spits out" (a metaphor?) an atom, and another "finds itself" (a hint of anthropomorphism?) unstable.


Molecular billiards?
Can a line of molecules 'tethered' onto a metal surface behave like a Newton's cradle?

Generating reverse swing

The figure below was drawn to represent the work as described, showing that "another electron impulse could be used to set… off…a reverse swing".


A representation of the scheme described in Chemistry World. The different colours used for the fluorine 'atoms' 1 are purely schematic to give a clear indication of the changes – the colours have no physical significance as all the fluorine atoms are equivalent. 2 The molecules are shown here as if atoms were simply stuck to each other in molecules (rather than having become one larger multi-nuclear structure) for the same reason. 1 In science we select from different possible models and representations for particular purposes.3


That reference to "another electron impulse" being needed is significant,

"What was more, each CF3 had been flipped in the process, so the Newton's cradle as a whole was a mirror image of how it had begun, giving the potential for a reverse swing. Unlike a desk Newton's cradle, it did not swing back on its own accord, but another electron impulse could be used to set it off."

Blow, 2022
"…the Newton's cradle as a whole was a mirror image of how it had begun"

Mirroring a Newton's cradle

Chemistry World is the monthly magazine of the Royal Society of Chemistry (a learned society and professional body for chemists, primarily active in the UK and Eire) sent to all its members. So, Chemistry World is part of the so-called secondary literature that reports, summarises, and comments on the research reports published in the journals that are considered to comprise the primary academic literature. The primary literature is written by the researchers involved in the individual studies reported. Secondary literature is often written by specialist journalists or textbook authors.

The original report of the work (Leung, Timm & Polanyi, 2021) was published in the research journal Chemical Communications. That paper describes how:

"Hot [sic] F-atoms travelling along the line in six successive 'to-and-fro' cycles paralleled the rocking of a macroscopic Newton's cradle."

Leung, Timm & Polanyi, 2021, p.12647

A simple representation of a Newton's cradle (that is, "a macroscopic Newton's cradle")


These authors explain that

"…energised F can move to- and-fro. This occurs in six successive linear excursions, under the influence of electron-induced molecular dissociation at alternate ends of the line…. The result is a rocking motion of atomic F which mirrors, at the molecular scale, the classic to-and-fro rocking of a macroscopic Newton's cradle. Whereas a classic Newton's cradle is excited only once, the molecular analogue [4] here is subjected to opposing impulses at successive 'rocks' of the cradle.

The observed multiple knock-on of F-atoms travelling to-and-fro along a 1D row of adsorbates [molecules bound to a substrate] is shown…to be comparable with the synchronous motion of a Newton's cradle."

Leung, Timm & Polanyi, 2021, p.12647-50
Making molecules rock?

'Rocking' refers to a particular kind of motion. In a macroscopic context, there are familiar example of rocking as when a baby is cradled in the arms and gently 'rocked' back and forth.


A rocking chair is designed to enable a rocking motion where the person in the chair moves back and forth through space.

The molecular system described by Leung and colleagues is described as "mirror[ing], at the molecular scale…to-and-fro rocking"

[Image by OpenClipart-Vectors from Pixabay]


The researchers are suggesting that, in some sense, the changes in their molecular scale system are equivalent to "the synchronous motion of a Newton's cradle".

Titles and texts in scientific writing

One feature of interest here is a difference between the way work is described in the article titles and the main texts.


Chemistry society professional journalAcademic research journal
Title"…molecular Newton's cradle""…an atomic-scale Newton's cradle"
TextThe effect was "mimicking … a Newton's cradle."The effect
"paralleled…
mirrors…
[is] comparable with
"
Newton's cradle
Bold titles: nuanced details

Titles need to capture the reader's attention (and in science today the amount of published material is vastly more than only one person could read) so there is a tendency to be bold. Both these articles have titles suggesting that they are reporting a nanoscopic Newton's cradle. The reader enticed to explore further then discovers that there are caveats. What is being claimed is not a Newton's cradle at minuscule scale but something which though not actually a Newton's cradle, does have some similarity to (mimics, parallels, mirrors) one.

This is important as "the molecular analogue" is only analogous in some respects.

The analogy

There is an analogy, but the analogy can only be drawn so far. In the analogy, the suspended balls of the Newton's cradle are seen as analogous to the 'chemisorbed' molecules lined up on the surface of a copper base.

Analogies are used in teaching and in science communication to help 'make the unfamiliar familiar', to show someone that something they do not (yet) know about is actually, in some sense at least, a bit like something they are already familiar with. In an analogy, there is a mapping between some aspect(s) of the structure of the target ideas and the structure of the familiar phenomenon or idea being offered as an analogue. Such teaching analogies can be useful to the extent that someone is indeed highly familiar with the 'analogue' (and more so than with the target knowledge being communicated); that there is a helpful mapping across between the analogue and the target; and that comparison is clearly explained (making clear which features of the analogue are relevant, and how).

Analogies only map some features from analogue to target. If there was a perfect transfer from one system to the other, then this would not be an analogy at all, but an identity! So, in a sense there are no perfect analogies as that would be an oxymoron. Understanding an analogy as intended therefore means appreciating which features of the analogue do map across to the target, and which do not. Therefore in using analogies in teaching (or communicating science) it is important to be explicit about which features of the analogue map across (the 'positive' analogy) and which do not, including features which it would be misleading to seek to map across – the so called 'negative analogy.' For example, when students think of an atom as a tiny solar system, they may assume that atom, like the solar system, is held together by gravitational force (Taber, 2013).

It probably seems obvious to most science teachers that, if comparing the atom with a solar system, the role that gravity has in binding the solar system maps across to the electrical attraction between a positive nucleus and negative electrons; but when a sample of 14-18 year-olds were asked about atoms and solar systems, a greater number of them suggested the force binding the atom was gravitational than suggested it was electrical (Taber, 2013)!

Perhaps the most significant 'negative analogy' in the research discussed here was pointed out in both the research paper and the subsequent Chemistry World report, and relates to the lack of inherent oscillation in the molecular level system. The nanoscopic system is like a Newton's cradle that only has one swing, so the owner has to reset it each half cycle.

  • "Unlike a desk Newton's cradle, it did not swing back on its own accord, but another electron impulse could be used to set it off."
  • "Whereas a classic Newton's cradle is excited only once, the molecular analogue here is subjected to opposing impulses at successive 'rocks' of the cradle"

That is quite a major difference when using the Newton's cradle for an analogy.


Who wants a Newton's cradle as an executive toy if it needs to be manually reset after each swing?


The positive and negative analogies

We can consider that the Newton's cradle is a little like a simple pendulum that swings back and forth, with the complication that instead of a single bob swinging back and forth, the two terminal spheres share the motion between them due to the momentum acquired by one terminal sphere being transferred thorough the intermediate spheres to the other terminal sphere.

In understanding the analogy it is useful to separately consider these two features of a Newton's cradle

  • a) the transfer of momentum through the sequence
  • b) moving a mass through a gravitational field

If we then think of the Newton's cradle as a 'pendulum with complications' it seems that the molecular system described by Leung and colleagues fails to share a critical feature of a pendulum.

A chain reaction – the positive analogy

The two systems map well in so far as that they comprise a series of similar units (spheres, molecules) that are carefully aligned, and constrained from moving out of alignment, and that there is a mechanism that allows a kind of chain reaction.

In the molecular scenario, the excitation of a terminal molecule causes a fluorine atom to become unbound from the molecule and to carry enough momentum to collide with and excite a second molecule, binding to it, whilst causing the release of one of the molecule's original fluorine atoms which is similarly ejected with sufficient momentum to collide with the next molecule…

This 'chain reaction' 5 is somewhat similar to how, in a Newton's cradle, the momentum of a swinging sphere is transferred to the next, and then to the next, and then the next, until finally all the momentum is transferred to the terminal sphere. (This is an idealised cradle, in any real cradle the transfer will not be 100% perfect.) This happens because the spheres are made from materials which collide 'elastically'.6


The positive analogy: The notion of an atomic level Newton's cradle makes use of a similarity between two systems (at very different scales) where features of one system map onto analogous features of the other.

The negative analogy

Given that positive mapping, a key difference here is the way the components of the system (suspended spheres or chemisorbed molecules) are 'tethered'.

Chemisorbed molecules

The molecules are attached to the copper surface by chemical bonding, which is essentially an electromagnetic interaction. A sufficient input of energy could certainly break these bonds, but the the impulse being applied parallel to the metal surface is not sufficient to release the molecules from the substrate. It is enough to eject a fluorine atom from a molecule where carbon is already bound to the surface and three other fluorines atoms (carbon is tetravalent, but it is is bonded to the copper as well as the fluorines) – but the final molecule is an adsorbed CF2 molecule, which 'captures' the fluorine and becomes an absorbed CF3 molecule.

Now, energy is always conserved in all interactions, and momentum is also always conserved. If the kinetic energy of the 'captured' fluorine atom does not lead to bond breaking it must end up somewhere else. The momentum from the 'captured' atom must also be transferred somewhere.

Here, it may be useful to think of chemical bonds as having a similarity to springs – in the limited sense that they can be set vibrating. If we imagine a large structure made up of spheres connected by springs, we can see that if we apply a force to one of the spheres, and the force is not enough to break the spring, the sphere will start to oscillate, and move any spheres connected to it (which will move spheres attached to them…). We can imagine the energy from the initial impulse, and transferred through the chain of molecules, is dissipated though the copper lattice, and adds to its internal energy. 7


The fluorocarbon molecules are bound to the surface by chemical bonding. If the energy of impact is insufficient to cause bond breaking, it will be dissipated.

Working against gravity

In a simple pendulum, work is done on a raised sphere by the gravitational field, which accelerates the bob when it is released, so that it is moving at maximum speed when it reaches the lowest point. So, as it is moving, it has momentum, and its inertia means it continues to swing past the equilibrium position which is the 'attractor' for the system. In a Newton's cradle the swinging sphere cannot continue when it collides with the next sphere, but as its momentum is transferred through the train of spheres the other terminal sphere swings off, vicariously continuing the motion.

In an ideal pendulum with no energy losses the bob rises to its original altitude (but on the other side of the support) by which time it has no momentum left (as gravitational force has acted downwards on it to reduce its momentum) – but gravitational potential energy has again built up in the system to its original level. So, the bob falls under gravity again, but, being constrained by the wire, does not fall vertically, rather it swings back along the same arc.

It again passes the equilibrium position and returns to the point where it started, and the process is repeated. In an ideal pendulum this periodic oscillation would continue for ever. In a real pendulum there are energy losses, but even so, a suitable bob can swing back an forth for some time, as the amplitude slowly reduces and the bob will eventually stop at the attractor, when the bob is vertical.

In a (real) Newton's cradle, one ball is raised, so increasing the gravitational potential energy of the system (which is the configuration of the cradle, with its spheres, plus the earth). When it is released, gravity acts to cause the ball to fall. It cannot fall vertically as it is tethered by a steel (or similar) wire which is barely extendible, so the net force acting causes the ball to swing though an arc, colliding with the next ball.


The Newton's cradle design allows the balls to change their 'height' in relation to a vertical gravitational field direction – in effect storing energy in a higher gravitational field configuration that can do work to continue the oscillation. The molecular analogue 4 does not include an equivalent mechanism that can lead to simultaneous oscillation.
(Image by 3D Animation Production Company from Pixabay)

Two types of force interactions

The steel spheres, however, are actually subject to two different kinds of force. They are, like the molecules, also tethered by the electromagnetic force (they are attached to steel wires which are effectively of fixed length due to the bonding in the metal 8), but, in addition, subject to the gravitational field of the earth. 9 The gravitational field is relevant because a sphere is supported by a wire that is fixed to a rigid support (the cradle) at one end, but free to swing at the end attached to the sphere.

The Newton's cradle operates in what is in effect a uniform gravitational field (neither the radial nature or variation with altitude of the earth's field are relevant on the scale of the cradle) – and the field direction is parallel to the plane in which the balls hang. So, the gravitational potential of the system changes as a sphere swings higher in the field.


In a Newton's cradle, a tethered sphere's kinetic energy allows it to rise in a gravitational field, before swinging back gaining speed (and regaining kinetic energy)

The design of the system is such that a horizontal impulse on a sphere leads to it swinging upwards – and gravity then acts to accelerate it towards a new collision. 10 This collision, indirectly, gives a horizontal impulse to the sphere at the other end of the 'train' where again the nature of the support means the sphere swings upward – being constrained by both the wire maintaining its distance from the point of suspension at the rigid support of the frame, and its weight acting downwards.

The negative analogy concerns the means of constraining the system components

The two systems then both have a horizontal impulse being transferred successively along a 'train' of units. Leung and colleagues' achievement of this at the molecular scale is impressive.

However, the means of 'tethering' in the two systems is different in two significant ways. The spheres in the Newton's cradle are suspended from a rigid frame by inextensible wires that are free to swing. Moreover, the cradle is positioned in a field with a field direction perpendicular to the direction of the impulse. This combination allows horizontal motion to be converted to vertical motion reversibly.

The molecular system comprises molecules bound to a metal substrate. The chemisorbtion is less like attaching the molecules with long wires that are free to swing, and more like attaching them with short, stiff springs. Moreover, at the scale of the system, the substrate is less like a rigid frame, and more like a highly sprung mattress. So, even though kinetic energy from the 'captured' fluorine atom can be transferred to the bond, this can then be dissipated thorough the lattice.


The negative analogy: the two systems fail to map across in a critical way such that in a Newton's cradle one initial impulse can lead to an extended oscillation, but in the molecular system the initiating energy is dissipated rather than stored to reverse the chemical chain reaction.

The molecular system does not enable the terminal molecule to do work in some form that can be recovered to reverse the initial process. By contrast, a key feature of a Newton's cradle is that the spheres are constrained ('tethered') in a way that allows them to move against the gravitational field – they cannot move further away from, nor nearer to, their point of support, yet they can swing up and down and change their distance from the earth. Mimicking that kind of set-up in a molecular level system would indeed be an impressive piece of nano-engineering!


Work cited:
  • Blow, M. (2022). Molecular Newton's cradle challenges theory of transition states. Chemistry World, 19(1), 38.
  • Leung, L., Timm, M. J., & Polanyi, J. C. (2021). Reversible 1D chain-reaction gives rise to an atomic-scale Newton's cradle. Chemical Communications, 57(94), 12647-12650. doi:10.1039/D1CC05378G
  • Taber, K. S. (2013). Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems. Research in Science Education, 43(4), 1377-1406. doi:10.1007/s11165-012-9312-3 (The author's manuscript version may be downloaded here.)

Notes

1 Strictly they are no distinct atoms once several atoms have been bound together into a molecule, but chemists tend to talk in a shorthand as if the atoms still existed in the molecules.


2 Whilst I expect this is obvious to people who might choose to read this posting, I think it is worth always being explicit about such matters as students may develop alternative conception at odds with scientific accounts.

In the present case, I would be wary of a learner thinking along the lines "of course the atom will go back to its own molecule"

Students will commonly transfer the concepts of 'ownership' and 'belonging' from human social affairs to the molecular level models used in science. Students often give inappropriate status to the history of molecular processes (as if species like electrons recall and care about their pasts). One example was a student who suggested to me that in homolytic bond breaking each atom would get its own electron back – meaning the electrons in the covalent bond would return to their 'own' atoms.

I have also been told that in double decomposition (precipitation) reactions the 'extra' electron in an anion would go back to its own cation in the reagents, before the precipitation process can occur (that is, precipitation was not due to the mutual attraction between ions known to be present in the reaction mixture: they first had to become neutral atoms that could then from an ionic bond by electron transfer!) In ionic bonding it is common for learners to think that an ionic bond can only be formed between ions that have been formed by a (usually fictitious) electron transfer event.

Read about common alternative conceptions of ionic bonding

Read about a classroom resource to diagnose common alternative conceptions (misconceptions) of ionic bonding

Read about a classroom resource to support learning about the reaction mechanism in precipitation reactions


3 I have here represented the same molecules both as atoms linked by bonds (where I am focusing on the transfer of fluorine atoms) and in other diagrams as unitary spheres (where I am focusing on the transfer of energy/momentum). All models and representations used for atoms and molecules are limited and only able to reflect some features of what is being described.


4 A note on terminology. An analogy is used to make the unfamiliar familiar by offering a comparison with something assumed to already be familiar to an audience, in this case the molecular system is the intended target, and the (that is, a generic) Newton's cradle is the analogue. However, analogy – as a mapping between systems – is symmetrical so each system can be considered the analogue of the other.


5 In some way's Leung's system is more like a free radical reaction than a Newton's cradle. A free radical is an atom (or molecule) with an unpaired electron – such as an unbound fluorine atom!

In a free radical reaction a free radical binds to a molecule and in doing so causes another atom to be ejected from the molecule – as a free radical. That free radical can bind to another molecule, again causing it to generate a new free radical. In principle this process can continue indefinitely, although the free radical could also collide with another free radical instead of a molecule, which terminates the chain reaction.


6 The balls need to be (near enough) perfectly elastic for this to work so the total amount of kinetic energy remains constant. Momentum (mv) is always conserved in any collision between balls (or other objects).

If there were two balls, then the first (swinging) sphere would be brought to a stop by the second (stationary) sphere, to which its momentum would be transferred. So, the first ball would stop swinging, but the second would swing in its place. The only way mv and mv2 (and so kinetic energy) can be both conserved in collisions between balls of the same mass is if the combination of velocities does not change. That is, mathematically, the only solutions are where neither of the two balls' velocities change, or where they are swapped to the other permutation (here, the velocity of the moving ball becomes zero, but the stationary ball moves off with the velocity that the ball that hit it had approached it with).

The first solution would require the swinging steel ball to pass straight through the stationary steel ball without disturbing it. Presumably, quantum mechanics would suggest that ('tunnelling') option has a non-zero (but tiny, tiny – I mean really tiny) probability. To date, in all known observations of Newton's cradles no one has reported seeing the swinging ball tunnel though the stationary ball. If you are hoping to observe that, then, as they say, please do not hold your breath!

With more balls momentum is transferred through the series: only the final ball is free to move off.


7 We can imagine that in an ideal system of a lattice of perfectly rigid spheres attached to perfect springs (i.e., with no hysteresis) and isolated from any other material (n.b., in Leung et al 's apparatus the copper would not have been isolated from other materials), the whole lattice might continue to oscillate indefinitely. In reality the orderliness will decay and the energy will have in effect warmed the metal.


8 Strictly, the wires will be longest when the spheres are directly beneath the points of support, as the weight of a sphere slightly extends the wire from its equilibrium length, and it will get slightly shorter the further the sphere swings away from the vertical position. In the vertical position, all the weight is balanced by a tension in the wire. As the ball swings away from the vertical position, the tension in the wire decreases (as only the component of weight acting along the wire needs to be balanced) and an increasing component of the weight acts to decelerate it. But the change in extension of the wire is not significant and is not noticeable to someone watching a Newton's cradle.

When the wire support is not vertical a component of the weight of the sphere acts to change the motion of the sphere


9 Molecules are also subject to gravity, but in condensed matter the effect is negligible compared with the very much stronger electromagnetic forces acting.


10 We might say that gravity decelerates the sphere as is swings upwards and then accelerates as it swings back down. This is true because that description includes a change of reference direction. A scientist might prefer to say that gravity applies a (virtually) constant downward acceleration during the swing. This point is worth making in teaching as a very common alternative conception is to see gravity only really taking effect at the top of the swing.


What the jet tried to do next…

Anthropomorphising surface tension


Keith S. Taber


it seems good training for a scientist to always read accounts of science with a critical filter primed to notice figurative language and to check that the communication can be understood in a non-metaphorical way

When water is poured from a bottle or other container the stream of liquid can take up complex shapes. In particular, it has long been noted how the stream can appear to have the shape of a chain or string of beads, with the flow seeming to be wider in some places that others.


A stream of poured water does not form a perfect cylinder – something that physics should be able to explain.

(Image by tookapic from Pixabay)


This is just the kind of thing that physicists think they should be able to explain…using physics. An article in Physics World (Jarman, 2022) reports some recent work on just this outstanding problem,

"If you pour water out of a bottle, the liquid stream will often adopt a chain-like structure….At the heart of the effect is the non-cylindrical profile of the jet as it emerges. To minimize surface tension, the jet tries to become a cylinder, but this motion overshoots and results in an oscillation in the profile shape."

Article in Physics World

What intrigued me here was the choice of phrasing: "To minimize surface tension, the jet tries to become a cylinder…". This language could be considered to reflect teleology, and even anthropomorphism.

Teleology?

Teleological explanations are those that explain something in terms of some kind of endpoint. Something happens in order to bring about some specific state of affairs. The sun shines to allow us to find our way. Plants produce oxygen so we can breathe. That is, there is seen to be purpose in nature, something that is characteristic of mythical and supernatural thinking. In science, teleological explanations are strictly considered a kind of pseudo-explanation – something that has the form of an explanation, but does not really explain anything. Sometimes we find apparently teleological explanations in science because they are being used as a kind of shorthand. For example, if we know that science suggests entropy always increases in processes, we might interpret a scientist's comment that something happens 'in order to increase entropy' to be a loose (or lazy) way of saying that some suggested mechanism or action is considered likely because it is consistent with the assumption that entropy will increase.

Read about pseudo-explanations

Read about teleology in science

Here it is suggested that the odd shape is formed in order "to" minimise surface tension. Scientists have observed that many phenomena (such as rain forming roundish drops) can be explained in terms that surface tension tends to be minimised (cf. entropy tends to increase, objects tend to roll down hills, people tend to get older). But the language here might suggest minimising surface tension is an end that nature seeks – that would be a teleological explanation.

Although perhaps this is not simple teleology, as it is not that the water forms into the shape it does to minimise surface tension, but something more nuanced is going on – the jet of water is actively trying, but not quite managing, to minimise surface tension.

anthropo… (to do with humans, as in anthropology)
…morphism (to do with form, as in morphology, amorphous)

…and anthropomorphism?

Anthropomorphic language refers to non-human entities as if they have human experiences, perceptions, and motivations. Both non-living things and non-human organisms may be subjects of anthropomorphism. Anthropomorphism may be used deliberately as a kind of metaphorical language that will help the audience appreciate what is being described because of its similarly to some familiar human experience. In science teaching, and in public communication of science, anthropomorphic language may often be used in this way, giving technical accounts the flavour of a persuasive narrative that people will readily engage with. Anthropomorphism may therefore be useful in 'making the unfamiliar familiar', but sometimes the metaphorical nature of the language may not be recognised, and the listener/reader may think that the anthropomorphic description is meant to be taken at face value. This 'strong anthropomorphism' may be a source of alternative conceptions ('misconceptions') of science.

Read about anthropomorphism

So, in our present case, we are told that "the "the jet tries to become a cylinder". This is anthropomorphic, as to try to do something means having a goal in mind and deliberately behaving in a way that it is believed, expected, or – at least – hoped, will lead to that goal. Human beings can try to achieve things. We can perceive our environment, have goals, conceptualise possibilities and means to reach them, and put in practice an intention.

Whether, and, if so, which, animals can try to do things rather than simply following evolved instincts is a debated issue.

  • Does a dog try to please its human companion by bringing the newspaper?
  • Does the dolphin try to earn a fish by jumping through a hoop? Perhaps.
  • Does the salmon try to get to a suitable spawning site ('ground', sic) by swimming upstream?
  • Does the spider try to make a symmetrical web?
  • Does the bee try to collect nectar by visiting flowers. Probably not.
  • Does she try to fertiliser those flowers with pollen to ensure there will be flowers for her to visit in future seasons? Almost certainly not!
Jets of water?

Do jets of water think that being cylindrical is desirable (perhaps because they recognise minimal surface tension as an inherent good?) , and so make efforts to bring this about? Clearly not. So, they do not try to do this. They do not try to do anything. They are not the kind of entities that can try.

So, this language is metaphorical. The reader is meant to read that "the jet tries to become a cylinder" to mean something other than "the jet tries to become a cylinder". Now, often figures of speech are used in science communication because the ideas being communicated are abstract and complex, and metaphorical language that describes the science in more familiar terms makes the text more accessible and increases engagement by the audience/readership.

A question here then, is what "the jet tries to become a cylinder" communicates that was more likely to be inaccessible to the reader. Physics World is the house magazine of the Institute of Physics, which means it is sent to all it members working across all areas of physics. So a broad readership, though largely a readership of physicists.

Tracing the stream back to the source

Another question that occurred to me was whether the reporter (Jarman) was simply reporting the original researchers' (Jordan, Ribe, Deblais and Bonn) ways of communicating their work. That report was in an academic journal, Physical Review Fluids, where formal, technical language would be expected. So, I looked up the paper, to see how the work was described there.

Under a heading of 'phenomenology', Jordan and colleagues explain

"Chain oscillations are most readily observed when the viscosities of the jet and the ambient fluid are low and the interface has a high surface tension. Water jets in air satisfy these criteria, and so it is no surprise that chain oscillations occur in many everyday situations. Deformation and vibration of a jet are capillary phenomena in which surface tension acts to reduce the jet's surface area. If the cross section is not circular, its highly curved portions are pulled inward and its weakly curved portions pushed outward relative to a circular section with the same area. But due to inertia the movement overshoots, with the result that the long and short axes of the section are interchanged. The shape of the section therefore evolves as it moves along the axis of the jet, producing a steady liquid chain when observed in the laboratory frame…"

Jordan, Ribe, Deblais & Bonn, 2022

"The shape of the section therefore evolves as it moves along the axis of the jet, producing a steady liquid chain when observed"

(Image by Kevin Phillips from Pixabay)


(This seemed to be a somewhat different meaning of 'phenomenology' to that sometimes used in science education or social science more generally. Phenomenology looks to explore how people directly experience and perceive the world. Jordan and colleagues include here a good deal of re-conceptualisation and interpretation of what is directly observed. 1 )

The effect Jordan and colleagues describe seems analogous to how a pendulum bob that is released and so accelerated (by gravity) towards the point directly beneath its support (where gravitational potential is minimised) acquires sufficient momentum to overshoot, and swing upwards, beginning an oscillatory motion. Something similar is seen in an ammeter where the needle often overshoots, and initially oscillates around the value of a steady current reading (unless the spring is 'critically damped'). The effect is also made use on in striking a tuning fork.

No need to try

There is no mention here of 'trying', so no clear anthropomorphism. So, this was a gloss added in the report in Physics World, perhaps because anthropomorphic narratives are especially engaging and readily accepted by audiences; perhaps because the reporter needed to rephrase so as not to borrow too much of the original text, or perhaps as part of preparing brief copy to an editorially assigned word length. Or, perhaps Sam Jarman was not even conscious of the anthropomorphism being used, as this seems such a natural way to communicate. 2

Surface tension acting up

Did the original authors avoid teleology? They do write about how "surface tension acts to reduce the jet's surface area?" This could be read as teleological – as there seems to be a purpose or goal in the 'action', even if it is not here presented as a premeditated action. Could any suggestions of such a purpose be avoided?

One response might be that, yes, a physicist might suggest the 'true' description is a mathematical formula (and there are plenty of formulae in Jordan et al's paper) and that a verbal description is necessarily the translation of an objective description into an inherently figurative medium (natural language).

And, of course, this is not some special case. We might read that gravity acts to pull something to the ground or air resistance acts to slow a projectile down and so forth. 'To' may just imply a cause of an outcome, not a purpose.

I think a rewording along the lines "the action of the surface tension reduces the jet's surface area"conveys the same meaning, but is more of a neutral description of a process, avoiding any suggestion that there is a purpose involved.

Reading and interpreting

But does this matter? In teaching young people such as school children, there is evidence that some figurative language that is anthropomorphic or teleological may be understood in those terms, and student thinking may later reflect this. Part of science education is offering learners an insight into how science does seek to (oh, science personified: sorry, scientists seek to) describe in neutral terms and not to rely on nature having inherent goals, or comprising of the actions of sentient and deliberate agents.

The readership of Physics World is however a professional audience of members of the community of inducted physicists who are well aware that, actually, surface tension does not try to do anything; and that minimising surface tension is a common observed pattern, not something set out as a target for physical systems to aim for. These physicists are unlikely to be led astray by the engaging prose of Sam Jarman and will fully appreciate the intended meaning.

That said, there is an intimate bidirectional relationship between our thinking and our speech – our speech reflects our thought pattens, but our language also channels our thinking. So, it seems good training for a scientist to always read accounts of science with a critical filter primed to notice figurative language and to check that the communication can be understood in a non-metaphorical way. That includes checking that our understanding of what we have read is in keeping with scientific commitments to exclude explanations that are framed in terms of nature's end goals, or the deliberate agency of non-sentient 'actors'.


  • Jarman, S. (2022). Flowing liquid 'chains' are best described by Niels Bohr, not Lord Rayleigh. Physics World, 35(12).
  • Jordan, D. T. A., Ribe, N. M., Deblais, A., & Bonn, D. (2022). Chain oscillations in liquid jets. Physical Review Fluids, 7(10), 104001. doi:10.1103/PhysRevFluids.7.104001

Notes

1 However, none of us are able to be completely naive observers of the world. As William James long ago pointed out, the un-mediated sensory experience of a newborn is a chaos of noise and shapes and colours and so on. Even recognising another person or the presence of a table is an act of interpretation that we learn.

So, experts in a field do see things others do not. A field palaeontologist sees a fossil fragment where the rest of us see undifferentiated dirt and stones. The biochemist sees a steroid structure in a patterns of lines. The football pundit sees a 4-4-2 formation where the occasional viewers just sees people running around. The experienced poker player sees a 'tell' that others would not notice. The professional musician hears a passage in E minor, when most of us just hear a tune.


2 This kind of language reflects a way of thinking and talking often called 'the natural attitude'. Science can be seen in part as a deliberate move to look beyond the common-sense world of the natural attitude to problematise phenomena that might be readily taken as given.

We may get used to, and simply accept, that ice is cold, fire burns, the Lord/King makes decisions and owns the land (and people!), rivers flow, things fall down, the heretic must die, the sun moves across the sky, etc. – and probably most people did for much of human history – where the critical (scientific) attitude is to always ask 'why?'


The complicated social lives of stars

Stealing, escaping, and blowing-off in space


Keith S. Taber


"After a lecture on cosmology and the structure of the solar system, James [William James] was accosted by a little old lady.

'Your theory that the sun is the centre of the solar system, and the earth is a ball which rotates around it has a very convincing ring to it, Mr. James, but it's wrong. I've got a better theory,' said the little old lady.

'And what is that, madam?' inquired James politely.

'That we live on a crust of earth which is on the back of a giant turtle.'

Not wishing to demolish this absurd little theory by bringing to bear the masses of scientific evidence he had at his command, James decided to gently dissuade his opponent by making her see some of the inadequacies of her position.

'If your theory is correct, madam,' he asked, 'what does this turtle stand on?'

'You're a very clever man, Mr. James, and that's a very good question,' replied the little old lady, 'but I have an answer to it. And it's this: The first turtle stands on the back of a second, far larger, turtle, who stands directly under him.'

'But what does this second turtle stand on?' persisted James patiently.

To this, the little old lady crowed triumphantly,

'It's no use, Mr. James – it's turtles all the way down.'

Ross, 1967, iv

"The Hindoos [sic] held the earth to be hemispherical, and to be supported like a boat turned upside down upon the heads of four elephants, which stood on the back of an immense tortoise. It is usually said that the tortoise rested on nothing, but the Hindoos maintained that it floated on the surface of the universal ocean. The learned Hindoos, however, say that these animals were merely symbolical, the four elephants meaning the four directions of the compass, and the tortoise meaning eternity." (The Popular Science Monthly, March, 1877; image via Wikipedia)

It's metaphors all the way down

A well-known paper in the journal 'Cognitive Science' is entitled 'The metaphorical structure of the human conceptual system' (Lakoff & Johnson, 1980). What the authors meant by this was that metaphor, or perhaps better analogy, was at the basis of much of our thinking, and so our language.

This links to the so-called 'constructivist' perspective on development and learning, and is of great significance in both the historical development of science and in science teaching and learning. Consider some of the concepts met in a science course (electron, evolution, magnetic flux, hysteresis, oxidation state, isomerism…the list is enormous) in comparison to the kind of teaching about the world that parents engage in with young children:

  • That is a dog
  • That is a tree
  • That is round
  • This is hot
  • This is aunty
  • etc.

Pointing out the names of objects is not a perfect technique – just as scientific theories are always underdetermined by the available data (it is always possible to devise another scheme that fits the data, even if such a scheme may have to be forced and convoluted), so the 'this' that is being pointed out as a tree could refer to the corpse of trees, or the nearest branch, or a leaf, or this particular species of plant, or even be the proper name of this tree, etc. 1


Pointing requires the other person to successfully identify what is being pointed at
(Images by Joe {background} and OpenClipart-Vectors {figures} from Pixabay)


But, still, the 'this' in such a case is usually more salient than the 'this' when we teach:

  • This is an electron
  • This is reduction
  • This is periodicity
  • This is electronegativity
  • This is a food web
  • This is a ᴨ-bond
  • This is a neurotransmitter
  • etc.

Most often in science teaching we are not holding up a physical object or passing it around, but offering a 'this' which is at best a model (e.g., of a generalised plant cell or a human torso) or a complex linguistic structure (a definition in terms of other abstract concepts) or an abstract representation ('this', pointing to a slope of an a graph, is acceleration; 'this', pointing to an image with an arrangement of a few letters and lines, is a transition state…).

So, how do we bridge between the likes of dogs and trees on one hand and electrons and the strong nuclear force on the other (so to speak!)? The answer is we build using analogy and we talk about those constructions using a great deal of metaphor.2 That is, we compare directly, or indirectly, with what we can experience. This refers to relationships as well as objects. We can experience being on top of, beneath, inside, outside, next to, in front of, behind, near to, a long way from (a building, say – although hopefully not beneath in that case), and we assign metaphorical relationships in a similar way to refer to abstract scenarios. (A chloroplast may be found in a cell, but is sodium found in (or on) the periodic table? Yes, metaphorically. And potassium is found beneath it!)


In a wall, the bricks on the top layer are supported by the bricks in the layer beneath – but those are in turn supported by those beneath them.

In building, we have to start at the foundations, and build up level by level. The highest levels are indirectly supported by the foundations.

(Image by OpenClipart-Vectors from Pixabay)


In science, we initially form formal concepts based on direct experience of the world (including experience mediated by our interventions, i.e., experiments), and then we build more abstract concepts from those foundational concepts, and then we build even more abstract concepts by combining the abstract ones. In the early stages we refine 'common sense' or 'life-world' categories into formal concepts so we can more 'tightly' (and operationally, through standard procedures) define what count as referents for scientific terms (Taber, 2013). So, the everyday phenomenon of burning might be reconceptualised as combustion: a class of chemical reactions with oxygen.

This is not just substituting a technical term, but also a more rigid and theoretical (abstract) conceptualisation. So, in the 'life-world' we might admit the effects of too much sunshine or contact with a strong acid within the class of 'burning' by analogy with the effect of fire (it hurts and damages the skin); but the scientific categorisation is less concerned with direct perception, and more with explanation and mechanism. So, iron burning in chlorine (in the absence of any oxygen) is considered combustion, but an acid 'burn' is not.


Combustion without oxygen: A Royal Society of Chemistry video demonstrating the reactions of iron with the halogens.

This is what science has done over centuries, and is also what happens in science education. So, one important tool for the teacher is concept analysis, where we check which prerequisite concepts need to be part of a student's prior learning before we introduce some new concept that is built upon then (e.g., do not try to teach mass spectroscopy before teaching about atomic structure, and do not teach about atomic structure before introducing the notion of elements; do not try to teach about the photoelectric effect to someone who does not know a little about the structure of metals and the nature of electromagnetic radiation.)

This building up of abstract concepts, one on another, is reflected in the density of metaphor we find in our language. (That is a metaphorical 'building', metaphorically placed one upon another, with a metaphorical 'density' which is metaphorically 'inside' the language and which metaphorically 'reflects' the (metaphorical) building process! You can 'see' (a metaphor for understand) just how extensive (oops, another metaphorical reference to physical space) this is. Hopefully, the (metaphorical) 'point' is (metaphorically) 'made', and so I am going to stop now, before this gets silly. 3

A case study of using language in science communication: the death of stars

Rather, I am going to discuss some examples of the language used in a single science programme, a BBC radio programme/podcast in the long-running series 'In Our Time' that took as its theme 'The Death of Stars'. The programme was hosted by Melvyn Bragg, and The Lord Bragg's guests were Professors Carolin Crawford (University of Cambridge), the Astronomer Royal Martin Rees (University of Cambridge) and Mark Sullivan (University of Southampton). This was an really good listen (recommended to anyone with an interest in astronomy), so I have certainly not picked it out to be critical, but rather to analyse the nature of some of the language used from the perspective of how that language communicates technical ideas.


An episode of 'In Our Time' on 'The Death of Stars'
"The image above is of the supernova remnant Cassiopeia A, approximately 10,000 light years away, from a once massive star that died in a supernova explosion that was first seen from Earth in 1690"

A science teacher may be familiar with stars being born, living, and dying – but how might a young learner, new to astronomical ideas, make sense of what was meant?

The passing of stars: birth, death, and afterlife in the universe

The lives and deaths of stars

Now there is already a point of interest in the episode title. Are stars really the kind of entities that can die? Does this mean they are living beings prior to death?

There are a good many references in the talk of these three astronomers in the episode that suggests that, in astronomy at least, stars do indeed live and die. That is, this does not seem to be consciously used as a metaphor – even if the terminology may have initially been introduced that way a long time ago. The programme offered so much material on this theme, that I have separated it out for a post of its own:

"So, in the language of astronomy, stars are born, start young, live; sometimes living alone but sometimes not, sometimes have complicated lives; have lifetimes, reach the end of their lives, and die, so, becoming dead, eventually long dead; and indeed there are generations of stars with life-cycles."

The passing of stars: birth, death, and afterlife in the universe

In this post I am going to consider some of the other language used.

Making the unfamiliar familiar

Language is used in science communication to the public, as it is in teaching, to introduce abstract technical ideas in ways that a listener new to the subject can make reasonable sense of. The constructivist perspective on learning tells us that meaning is not automatically communicated from speaker (or author or teacher) to listener (or reader or student). Rather, a text (spoken or written, or even in some other form – a diagram, a graph, a dance!) has to be interpreted, and this relies on the interpretive resources available to the learner. 4 The learner has to relate the communication to something familiar, and the speaker can help by using ways to make the new idea seem like something already familiar.

Read about constructivism in education

This is why it it is so common in communicating science to simplify, to use analogies and similes, to gesture, to use anthropomorphism and other narrative devices. There was a good deal of this in the programme, and I expect I have missed some examples. I have divided my examples into

  • simplifications: where some details are omitted so not to overburden the listener;
  • anthropomorphism: where narratives are offered such that non human entities are treated as if sentient actors, with goals, that behave deliberately;
  • analogies where an explicit comparison is made to map a familiar concept onto the target concept being introduced; 5
  • similes and metaphors: that present the technical material as being similar to something familiar and everyday.

Simplification

Simplification means ignoring some of the details, and offering a gloss on things. The details may be important, but in order to get across some key idea it is introduced as a simplification. Progress in understanding would involve subsequently filling in some details to develop a more nuanced understanding later.

In teaching there are dangers in simplification, as if the simplified idea is readily latched onto (e.g., there are two types of chemical bonds: ionic and covalent) it may be difficult later to shift learners on in their thinking. This may mean that there is a subtle balance to be judged between

giving learners enough time to become comfortable with the novel idea as introduced in a simplified form,andseeking to develop it out into a more sophisticated account before it become dogma.

In a one-shot input, such as a public lecture or appearance in the media, the best a scientist may be able to do is to present an account which is simple enough to understand, but which offers a sense of the science.

Simplification: all elements/atoms are formed in stars

When introducing the 'In Our Time' episode, Lord Bragg suggested that

"…every element in our bodies, every planet, was made in one of those stars, either as they burned, or as they exploded".

Clearly Melvyn cannot be an expert on the very wide range of topics featured on 'In our time' but relies on briefing notes provided by his guests. Later, in the programme he asks Professor Rees (what would clearly be considered a leading question in a research context!) "Is the sun recycled from previous dead stars?"

"Yes it is because we believe that all pristine material in the universe was mainly just hydrogen and helium, and all the atoms we are made of were not there soon after the big bang. They were all made in stars which lived and died before our solar system formed. And this leads to the problem of trying to understand more massive stars which have more complicated lives and give rise to supernovae…

The cloud from which our solar system formed was already contaminated by the debris, from earlier generations of massive stars which had lived and died more than say five billion years ago so we're literally the ashes of those long dead stars or if you are less romantic we're the nuclear waste from the fuel that kept those old stars shining."

Prof. Martin Rees

There is a potential for confusion here.

"all the atoms we are made of were not there soon after the big bang. They were all made in stars which lived and died before our solar system formed"seems to be meant to convey something likenot all the atoms we are made of were there soon after the big bang.
[Some were, but the rest/others] were all made in stars which lived and died before our solar system formed

A different interpretation (i.e., that all atoms/elements are formed in stars) might well be taken, given Lord Bragg's introductory comments.

Professor Rees referred to how "…the idea that the elements, the atoms we are made of, were all synthesised in stars…" first entered scientific discourse in 1946, due to Fred Hoyle, and to

"this remarkable discovery that we are literally made of the ashes of long dead stars"

Prof. Martin Rees

Before the first star formation, the only elements present in the universe were hydrogen and helium (and some lithium) and the others have been produced in subsequent high energy nuclear processes. Nuclear fusion releases energy when heavier nuclei are formed from fusing together lighter ones, up to iron (element 56).

Forming even heavier elements requires an input of energy from another source. It was once considered that exploding stars, supernovae, gave rise to the conditions for this, but recently other mechanisms have been considered: and Prof. Sullivan described one of these:"we think these combining neutron stars are the main sites where heavy elements like strontium or plutonium, perhaps even gold or silver, these kinds of elements are made in the universe in these neutron stars combining with each other".

A human body includes many different elements, though most of these in relatively small amounts. Well represented are oxygen, carbon, calcium, and nitrogen. These elements exist because of the processes that occur in stars. However, hydrogen is also found in 'organic' substances such as the carbohydrates, proteins, and fats found in the human body. Typically the molecules of these substances contain more hydrogen atoms than atoms of carbon or any other element.


substanceformula
glucose (sugar)C6H12O6
leucine (amino aid)C6H13NO2
leukotriene B4 (inflammatory mediator)C20H32O4
thymine (nucleobase)C5H6N2O2
adreneline (hormone)C9H13NO3
insulin (hormone)C257H383N65O77S6
cholesterol (lipid)C27H46O
cobalamin (vitamin B12)C63H88CoN14O14P
formulae of some compounds found in human bodies

The body is also said to be about 60% water, and water has a triatomic molecule: two hydrogen atoms to one of oxygen (H2O). That is, surely MOST of "the atoms we are made of" are hydrogen, which were present in the universe before any stars were 'born'.

So, it seems here we have a simplification ("every element in our bodies…was made in one of those stars, either as they burned, or as they exploded"; "atoms we are made of … were all made in stars") which is contradicted later in the programme. (In teaching, it is likely the teacher would feel the need to draw the learner's attention to how the more detailed information was actually developing an earlier simplification, and not leave a learner to work this out for themselves.)

Simplification: mass is changed into energy

Explaining nuclear fusion, Prof. Crawford suggested that

"Nuclear fusion is when you combine nuclei of elements to form heavier elements, and when you do this there is a loss of mass, which is converted to energy which provides the thermal pressure and that is what counteracts the gravity and stalls the gravitational collapse."

Prof. Carolin Crawford

This seems to reflect a common alternative conception ('misconception') that, in nuclear processes, mass is converted to energy. This is often linked to Albert Einstein's famous equation E = mc2.

Actually, as discussed before here, this is contrary to the scientific account. The equation presents an equivalence between mass and energy, but does not suggest they can be inter-converted. In nuclear fusion, the masses of the new nuclei are very slightly less than the masses of the nuclei which react to form them (the difference is known as the mass defect), but this is because this omits some details of the full description of the process. If the complete process is considered then there is no loss of mass, just a reconfiguration of where the mass can be located.


The formation of helium from hydrogen in a star

(Image source: Wikamedia Commons)

Although the 4He formed has slightly less mass than four 1H; the positrons, neutrinos and gamma rays produced all have associated (energy and) mass, so that overall there is conservation of mass.


This is a bit like cooking some rice, and finding that when the rice is cooked the contents of the saucepan had slightly less weight than when we started – as some of the water we began with has evaporated and is no longer registering on our balance. In a similar way, if we consider everything that is produced in the nuclear process, then the mass overall is conserved.

As E = mc2 can be understood to tell us that mass follows the energy (or vice versa) we should expect mass changes (albeit very, very small ones) whenever work is done: when we climb the stairs, or make a cup of tea, or run down a mobile 'phone 'battery' (usually a cell?) – but mass is always conserved when we consider everything involved in any process (such as how the 'phone very, very slightly warms -and so very marginally increases the mass of – the environment).

Read 'How much damage can eight neutrons do?'

Despite the scientific principles of conservation of energy and conservation of mass always applying when we make sure we consider everything involved in a process, I have mentioned on this site another example of an astrophysicist suggesting mass can be converted into energy: "an electron and the positron, and you put them together, they would annihilate…they would annihilate into energy" (on a different episode of 'In Our Time': come on Melvyn…we always conserve mass).

Read 'The missing mass of the electron'

Perhaps this is an alternative conception shared by some professional scientists, but I wonder if it sometimes seems preferably to tell the "mass into energy" narrative because it is simpler than having to explain the full details of a process – which is inevitably a more complex story and so will be more difficult for a novice to take in. After all, the "mass into energy" story is likely to seem to fit with a listener's interpretive resources, as E=mc2 is such a famous equation that it can be assumed that it will be familiar to most listeners, even if only a minority will have a deep appreciation of how the equivalence works.

Anthropomorphic narratives

In science learning, anthropomorphism is (to borrow a much used metaphor) a double edged sword that can cut both ways. Teachers often find that using narratives that present inanimate entities which are foci of science lessons as if they are sentient beings with social lives and motivations engages learners and triggers mental images that a student can readily remember. So, students may recall learning about what happens at a junction in a circuit in terms of a story about an electron that had to make a decision about which way to go – perhaps she took one branch while her friend tried another? They recall that covalent bonds are the 'sharing' of electrons between atoms, and indeed that atoms want, perhaps even need, to fill their electron shells, and if they manage this they will be happy.

Read about anthropomorphism

The danger here is that for many students such narratives are not simply useful ways to get them thinking about the science concepts (weak anthropomorphism) but seem quite sufficient as the basis of explanations (strong anthropomorphism) – and so it may become difficult to shift them towards more canonical accounts. They will then write in tests that chemical reactions occur because the atoms want full shells, or that only one electron can be removed from a sodium atom because it then has a full shell. (That is, a force applied to an electron in an electric field is seen as irrelevant compared with the atom's desires. These are genuine examples reflecting what students have said.)

However, there is no doubt that framing scientific accounts within narratives which have elements of human experience as social agent does seem to help make these ideas engaging and accessible. Some such anthropomorphism is explicit, such as when gas molecules (are said to) like to move further apart, and some is more subtle by applying terms which would normally be used in relation to human experiences (not being bothered; chomping; escaping…).

What gravity did next

Consider this statement:

"All stars have the problem of supporting themselves against gravitational collapse, whether that is a star like our sun which is burning hydrogen into helium, and thus providing lots of thermal pressure to stop collapse, or whether it is a white dwarf star, but it does not have any hydrogen to burn, because it is an old dead star, fading away, so it has another method to stop itself collapsing and that is called degeneracy pressure. So, although a white dwarf is very dense, gravity is still trying to pull that white dwarf to be even denser and even denser."

Prof. Mark Sullivan

There is an explicit anthropomorphism here: from the scientific perspective gravity is not trying to pull the white dwarf to be even denser. Gravity does not try to do anything. Gravity is not a conscious agent with goals that it 'tries' to achieve.

However, there is also a more subtle narrative thread at work – that a star has the problem of supporting itself, and it seems that when its first approach to solving this problem fails, it has a fallback method "to stop itself collapsing". But the star is just a complex system where various forces act and so processes occur. A star is not the kind of entity that can have a problem or enact strategies to achieve goals. Yet, this kind of language seems to naturally communicate abstract ideas though embedding them within an accessible narrative.

Star as moral agents

In the same way, a star is not the type of entity which can carry out immoral acts, but

"A star like our sun will never grow in mass, because it lives by itself in space. But most stars in the universe don't live by themselves, they live in what are called binary systems where you have two stars orbiting each other, rather than just the single star that we have as the sun. They are probably born with different masses, and so they evolve at different speeds and one will become a white dwarf. Now the physics is a bit complicated, but what can happen, is that that white dwarf can steal material from its companion star."

Prof. Mark Sullivan

The meaning here seems very clear, but again there are elements of using an anthropomorphic narrative. For one star to steal material from another star, that material would have to first belong to that other star, and its binary 'partner' would have to deliberately misappropriate that material knowing it belongs to its 'neighbour' (indeed, "companion").

Such a narrative breaks down on analysis. If we were to accept that the matter initially belongs to the first star (leaving aside for the moment what kind of entities can be considered to own property) then given that the material in a star got to be there through mutual gravitational attraction, the only obvious basis for ownership is that that matter has become gravitationally bound as part of that star.

If we have no other justification than that (as in the common aphorism, possession is nine points of the law), then when the material is transferred to another star because its gravitational field gives rise to a net force causing the matter to become gravitationally bound to a different star, then we should simply consider ownership to have changed. There is no theft in a context where ownership simply depends on pulling with the greater force. Despite this, we readily accept an analogy from our more familiar human social context and understand that (in a metaphorical sense) one star has stolen from another!

Actually, theft can only be carried out by moral agents – those who have capacity to intend to deprive others of their property

"A person [sic] is guilty of theft if he dishonestly appropriates property belonging to another with the intention of permanently depriving the other of it; and "thief" and "steal" shall be construed accordingly"

U.K. Theft Act 1968

Generally, these days (though this was not always so), even non-human animals are seldom considered capable of being responsible for such crimes. Admittedly, the news agency Reuters reported that as recently as 2008 "A Macedonian court convicted a bear of theft and damage for stealing honey from a beekeeper", but this seems to have been less a judgement on the ability of the bear (convicted it its absence) to engage in ethical deliberation, and more a pragmatic move that allowed the bee-keeper to be awarded criminal damages for his losses.

But, according to astronomers, stars are not only involved in the petty larceny of illicitly acquiring gas, but observations of exoplanets suggests some stars may even commit more daring, large-scale, heists,

"fairly small rocky planets two or three times the mass of the earth, in quite tight orbits around their star and you can speculate that they were once giant planets like Jupiter that have had the outer gassy layers blasted off and you are left with the rocky core, or maybe those planets were stolen from another star that got too close"

Prof. Carolin Crawford
A ménage à trois?

And there were other suggestions of anthropomorphism. It is not only stars that "don't live by themselves" in this universe,

"Nickel-56 [56Ni] is what's called an iron peak element, so it lives with iron and cobalt on the periodic table…"

Prof. Mark Sullivan

And, it is not only gravity which seems to have preferences:

"And like Mark has described with electrons not wanting to be squeezed, you have neutron degeneracy pressure. Neutrons don't like to be compressed, at some point they resist it."

Prof. Carolin Crawford

Neither electrons nor neutrons actually have any preferences: but this is an anthropomorphic metaphor that efficiently communicates a sense of the natural phenomena. 'Resist' originally had an active sense as in taking a stand, but today would not necessarily be understood that way. Wanting and liking (or not wanting and not liking), however, strictly only refer to entities that can have desires and preferences.

Navigating photons

Professor Rees explained why some imploding stars are not seen as very bright stars that fade over years, but rather observed through extremely intense bursts of high energy radiation that fade quickly,

"The energy in the form of ordinary photons, ordinary light, that's arisen in the centre of a supernova, diffuses out and takes weeks to escape, okay, but if the star is spinning, then it will be an oblate spheroid, it will have a minor axis along the spin axis, and so the easy way out is for the radiation not to diffuse through but to find the shortest escape route, which is along the spin axis, and I mention this because gamma ray bursts are … when a supernova occurs but because the original star was sort of flattened there is an easy escape route and all the energy escapes in jets along the spin axis and so instead of it diffusing out over a period of weeks, as it does in a supernova, it comes out in a few seconds."

Prof. Martin Rees

Again, the language used is suggestive. Radiation is not just emitted by the star, but 'escapes' (surely a metaphor?). The phrasing "an easy way out" implies something not being difficult. Inanimate entities like photons do not actually (literally) find anything difficult or easy. Moreover, the radiation might "find the shortest escape route": language that does not reflect a playing out of physical forces but an active search – only a being able to seek can find. Yet, again, the language supports an engaging narrative, 'softening' the rather technical story by subtly reflecting a human quest.

Professor Rees also referred to how,

"when those big stars face a crisis they blow off their outer layers"

Prof. Martin Rees

again using phrasing which seems to present the stars as deliberate actors – they actively "blow off" material when they "face a crisis". A crisis is (or at least was originally) a point where a decision needs to be made. A star does not reach the critical point where it reluctantly decides it needs to shed some material – but rather is subject to changing net forces as the rate of heat generation from nuclear processes starts to decrease.

A sense of anthropomorphic narrative also attaches to Professor Crawford's explanation of how more massive stars process material faster,

"…more massive stars … actually have shorter lifetimesthey have to chomp through their fuel supply so furiously that they exhaust it more rapidly

Prof. Carolin Crawford

'Chomping', a term for vigorous eating (biting, chewing, munching), is here a metaphor, as a star does not eat – as pointed out in the companion piece, nutrition is a characteristics feature of living things, but does not map across to stars even if they are described as being born, living, dying and so forth. To be furious is a human emotional response: stars may process their remaining hydrogen quickly, but there is no fury involved. Again, though, the narrative, perhaps inviting associated mental imagery, communicates a sense of the science.

Laid-back gas

Another example of anthropomorphism was

"…if you have a gas cloud that's been sitting out in space for billions of years and has not bothered to contract because it's been too hot or it's too sparse…"

Prof. Carolin Crawford

This is an interesting example, as Prof. Crawford explicitly explains here that the gas cloud has not contracted because of the low density of material (so weak gravitational forces acting on the particles) and/or the high temperature (so the gas comprises of energetic, so fast moving, particles), so the suggestion that the material cannot be bothered (implication: that the 'cloud' operates as a single entity, and is sentient if perhaps a little lazy) does not stand in place of a scientific explanation, but rather simply seems to be intended to 'soften' (so to speak) the technical nature of the language used.

Analogy

An analogy goes beyond a simile or metaphor because there is some kind of structural mapping to make it explicit in what way or ways the analogue is considered to be like the target concept. 5 (Such as when explaining mass defect in relation to the material lost from the saucepan when cooking rice!)


A potential teaching analogy to avoid alternative conceptions about mass defect in nuclear processes

Read about science analogies

So, Prof. Rees suggests that scientists can test their theories about star 'life cycles' by observation, even though an individual star only moves through the process over billions of years, and uses an analogy to a more familiar everyday context:

"We can test our theories, not only because we understand the physics, but because we can look at lots of stars. It is rather like if you had never seen a tree before, and you wandered around in a forest for a day, you can infer the life cycles of trees, you'd see saplings and big trees, etcetera. And so even though our lifetime is minuscule compared to the lifetime of a stable star, we can infer the population and life cycles of stars observationally and the theory does corroborate that fairly well."

Prof. Martin Rees

This would seem to make the basis of a good teaching analogy that could be discussed with students and would likely link well with their own experiences.

The other explicit analogy introduced by Prof. Rees is one well-known to physics teachers (sometimes in an ice-skater variant),

"If a contracting cloud has even a tiny little bit of spin, if it is rotating a bit, then as it contracts, then just like the ballerina who pulls in her arms and spins faster, then the contracting cloud will start to spin faster…"

Prof. Martin Rees

Stellar similes

I take the difference between a simile and a metaphor as the presence of an explicit marker (such as '…as…',…like…') to tell the listener/reader that a comparison is being made – so 'the genome is the blueprint for the body' would be a metaphor, where 'the genome is like a blueprint for the body' would be a simile.

As if a black hole cuts itself off

So, when Professor Rees describes how a massive black hole forms, he uses simile (i.e., "…as if were…"),

"So, if a neutron star gets above that mass, then it will compress even further, and will become a black hole – it will go on contracting until it, as it were, cuts itself off from the rest of the universe, leaving a gravitational imprint frozen in the space that's left. It becomes a black hole that things can fall into but not come out."

Prof. Martin Rees

There is an element of anthropomorphic narrative (see above) again here, if we consider the choice of active, rather than passive, phrasing

  • …as it were, cuts itself off from the rest of the universe, compared with
  • …as it were, becomes cut off from the rest of the universe

This is presented as something the neutron star itself does ("it will compress…become a black hole – it will go on contracting until it, as it were, cuts itself off…") rather than a process occurring in/to the matter of which it is comprised.

As if galaxies drop over the horizon

Prof. Rees uses another simile, when talking of how the expansion of space means that in time most galaxies will disappear from view,

"All the more distant universe which astronomers like Mark [Sullivan] study, galaxies far away, they will all have expanded their distance from us and in effect disappeared over a sort of horizon and so we just wouldn't see them at all. They'd be too faint, rather like …an inside-out black hole as it were, but in this case they moved so far away that we can't see them any more …"

Prof. Martin Rees

The term horizon, originally referring to the extent of what is in sight as we look across the curved Earth, has become widely used in astronomical contexts where objects cease to be in sight (i.e., the event horizon of a black hole beyond which any light being emitted by an object will not be able to leave {'escape!'} the black hole because of the intense gravitation field), but here Prof. Rees clearly marks out for listeners ("…in effecta sort of…") that he is making a comparison with the familiar notion of a horizon that we experience here on Earth.

There is another simile here, the reference to the expansion of space leading to an effect "rather like…an inside-out black hole as it were" – but perhaps that comparison would be less useful to a listener new to the topic as it uses a scientific idea rather than an everyday phenomenon as the analogue.

Through a glass onion darkly?

Another simile used by Professor Rees was a references to a "sort of onion skin structure". Now 'onion skin' sometimes refers to the hard, dry, outer material (the 'tunic') usually discarded when preparing the onion for a dish. To a science teacher, however, this is more likely to mean the thin layer of epithelial tissue that can be peeled from the scales inside the bulb. These scales, which are potentially the bases of leaves that can grow if the bulb is planted, are layered in the bulb.

The skin is useful in science lessons as it is a single layer of cells, that is suitable for students to dissect from the onion, and mount for microscopic examination – allowing them to observe the individual cells. There is something at least superficially analogous to this in stars. Observations of the Sun show that convection processes gives rise to structures referred to as convection 'cells'.



Yet, when Professor Rees' simile is heard in context, it seems that this is not the focus of the comparison:

"…all the nuclear processes which would occur at different stages in the heavy stars…which have this sort of onion skin structure with the hotter inner layers"

Prof. Martin Rees

Very large stars that have processed much of their hydrogen into helium can be considered to have a layered structure where under different conditions a whole sequence of processes are occurring leading to the formation of successively heavier and heavier elements, and ultimately to a build-up of iron near the centre.


The onion model of the structure of a large star (original image by Taken from Pixabay)

When I heard the reference to the onion, this immediately suggested the layered nature of the onion bulb being like the structure of a star that was carrying out the sequence of processes where the products of one fusion reaction become the raw material for the next. Presumably, my familiarity with the layered model of a star led me to automatically make an association with onions which disregarded the reference to the skin. That is, I had existing 'interpretive resources' to understand why the onion reference was relevant, even though the explicit mention of the skin might make the comparison obscure to someone new to the science.

Metaphors – all the way back up?

Some metaphors can easily be spotted (if someone suggests mitochondria are the power stations of the cell, or a lion is King of the jungle), but if our conceptual systems, and our language, are built by layers of metaphor upon metaphor then actually most metaphors are dead metaphors.

That is, an original metaphor is a creative attempt to make a comparison with something familiar, but once the metaphor is widely taken up, and in time becomes common usage and so a part of standard language, it ceases to act as a metaphor and becomes a literal meaning.

This presumably is what has happened with the adoption of the idea that stars are born, live out their lives, and then die: originally it was a poetic use of language, but now among astronomers it reflects an expanded standard use of terms that were once more restricted (born, live, lifetime, die etc.).


"…Stars dived in blinding skies / Stars die / Blinding skies…"
Stars die, but only due to artistic license
(Artwork from 'Star's die' by Porcupine Tree, photographer: Chris Kissadjekian)

If you see a standard candle…

When Professor Sullivan refers to a "standard candle", this is now a widely used astronomical notion (in relation to how we estimate distances to distant stars and galaxies that are much too far away to triangulate from parallax as the earth changes its position in the solar system) – but at one time this was used as a figure of speech.

Some figures of speech are created in the moment, but never widely copied and adopted. The astronomical community adopted the 'standard candle' such that it is now an accepted term, even though most young people meeting astronomical ideas for the first time probably have very little direct experience of candles. What might once have seemed a blatantly obvious allusion may now need explaining to the novice.

When Sir Arthur Eddington (famous for collecting observations during an eclipse consistent with predictions from relativity theory about the gravitational 'bending' of starlight) gave a public lecture in 1932, he seems to have assumed that his audience would understand the analogy between an astronomer's 'standard candles' (Cepheid variables) and standard candles they might themselves use!

"If you see a standard candle anywhere and note how bright it appears to you, you can calculate how far off it is; in the same way an astronomer observes his [or her] 'standard candle' in the midst of a nebula, notes its apparent brightness or magnitude, and deduces the distance of the nebula"

Eddington, 1933/1987, pp.7-8

This ongoing development in language means that it may not always be entirely clear which terms are still engaged with as if metaphors and which have now become understood as literal. That is, in considering whether some phrase is a metaphor we can ask two questions:

  • did the author/speaker intend this as a comparison, or do they consider the term has direct literal meaning?
  • does the reader/listener understand the term to have a literal meaning, or is it experienced as some novel kind of comparison with another context which has to be related back to the focus?

In the latter case we might also think it is important to distinguish between cases where the audience member can decode the intention of the comparison 'automatically' as part of normal language processing – and cases where they would have to consciously deliberate on the meaning. (In the latter case, the interpretation is likely to disrupt the flow of reading, and when listening could perhaps even require the listener to disengage from the communication such that subsequent speech is missed.)

(Metaphorical?) hosts

So, when Prof. Crawford suggests that

"The supernovae, particularly, are of fundamental importance for the host galaxy…"

Prof. Carolin Crawford

her use of the term 'host' is surely metaphorical (at least for a listener – this term is widely used in the literature of academic astronomy 6). A host offers hospitality for a guest. That does not seem to obviously reflect the relationship between a supernova and the galaxy it is found in and is part of. It is not a guest: rather, in Prof. Sullivan's terms we might suggest that star has 'lived its entire life' in that galaxy – it is its galactic 'home'. Despite this comparison not standing up to much formal analysis, I suspect the metaphor can be automatically processed by anyone with strong familiarity with the concept of a host. Precise alignment may not be a strong criterion for effective metaphors.

Another meaning of host refers to a sacrificial victim (as in the host in the Christian Eucharist) which seems unlikely to be the derivation here, but perhaps fits rather well with Prof. Crawford's point. A supernova too close to earth could potentially destroy the biosphere – an unlikely but not impossible event.

(Metaphorical?) bubbles

Professor Crawford described some of the changes during a supernova,

"You have got your iron core, it collapses down under gravity in less than a second, that kind of leaves the outer layers of the star a little behind, they crash down, bounce on the surface of the core, and then there's a shockwave, that propels all this stellar debris, out into space. So, this is part of the supernova explosion we have been talking about, and it carves out a bubble within the interstellar medium."

Prof. Carolin Crawford

There are a number of places here where everyday terms are applied in an unfamiliar context such as 'core', 'bouncing', 'layers' and 'debris'. But the idea of carving a bubble certainly seems metaphorical, if only because a familiar bubble would have a physical surface, where surely, here, there is no strict interface between discrete regions of gases. But, again, the term offers an accessible image to communicate the process. (And anyone looking at the NASA image above of convection cells in the Sun might well feel that these can be perceived as if bubbles.)

(Metaphorical?) pepper

Similarly, the idea of heavy elements from exploding suns being added to the original hydrogen and helium in the interstellar medium as like adding pepper also offers a strong image,

"…this is the idea of enrichment, you start off with much more primordial hydrogen and helium gas that gets steadily peppered with all these heavy elements…"

Prof. Carolin Crawford

Perhaps 'peppered' is now a dead metaphor, as it is widely used in various contexts unrelated to flavouring food.

(Metaphorical?) imprints

When Professor Rees referred to a neutron star that has become a black hole leaving a "gravitational imprint frozen in the space that's left" this makes good sense as the black hole will not be visible, but its gravitational field will have effects well beyond its event horizon. Yet, one cannot actually make an imprint in space, one needs a suitable material substrate (snow, plater, mud…) to imprint into; and nor has anything been 'frozen' in a literal sense. Indeed, the gravitational field will change as the black hole acquires more material through gravitational capture (and in the very long term loses mass though evaporates Hawking radiation – which is said to cause the black hole to 'evaporate'). So, this is a kind of double metaphor.

(Metaphorical?) blasts and blows

I report above both the idea that rocky planet close to large stars might have derived from 'giant' planets "that have had the outer gassy layers blasted off" and how "big stars…blow off their outer layers". Can stars really blow, or is this based on a metaphor. Blasts usually imply explosions, sudden events, so perhaps these are metaphorical blasts? And it is not just larger stars that engage in blowing off,

"[The sun] will blow off its outer layers and become a red giant, expanding so it will engulf the inner planets, but then the core will settle down to what's called a white dwarf, this is a dead, dense star, about a million times denser than normal stuff…."

Prof. Martin Rees

Metaphors galore!

Perhaps those last examples are not especially convincing – but this reflects a point I made earlier. Language changes over time: it is (metaphorically-speaking) fluid. If language started from giving names to things we can directly point at, then anything we cannot directly point at needs to be labelled in terms of existing words. Most of the terms we use were metaphors at some point, but became literal as the language norms changed.

But society is not a completely homogeneous language community. The requirements of professional discourse in astronomy (or any other specialised field of human activity) drive language modifications in particular regards ahead of general language use. It is not just people in Britain and the United States who are divided by a common language – we all are to some extent. What has become literal meaning for for one person (perhaps a science teacher) may well only be a metaphor to another (a student, say).

After all, when I look up what it is to blow off, I find that the most common contemporary meaning relates to a failure to meet a social obligation or arrangement – I am pretty sure (from the context) that that is not what Professor Rees was suggesting ("…when those big stars face a crisis they [let down] their outer layers".) Once we start looking at texts closely, they seem to be 'loaded' with figures of speech. A planet is not materially constrained in space, yet we understand why an orbit might be considered 'tight'.

In the proceeding quote, the core of a star seems to need no explanation although it presumably derives by analogy with the core of an apple or similar fruit, which itself seems to derive metaphorically form an original meaning of the heart. Again, what is meant by engulf is clear enough although originally it referred to the context of water and the meaning has been metaphorically (or analogously) extended.

The terms red giant and white dwarf clearly derive from metaphor. (Sure, a red giant is gigantic, but then, on any normal scale of human experience, so is a white dwarf.) These terms might mystify someone meeting them for the first time so not already aware they are used to refer to classes of star. This might suggest the value of a completely objective language for discussing science where all terms are tightly (hm, too metaphorical…closely? rigidly? well-) defined, but that would be a project reminiscent of the logical positivist programme in early twentieth century that ultimately proved non-viable. We can only define words with more words, and there are limits to the precision possible with a usable, 'living', language.

Take the "discovery that we are literally made of the ashes of long dead stars". Perhaps, but the term ashes normally refers to the remains of burnt organic material, especially wood, so perhaps we are not literally, but only metaphorically made of the ashes of long dead stars. Just as when when Professor Sullivan noted,

"the white dwarf is made of carbon, it's made of oxygen, and the temperature and the pressure in the centre of that white dwarf star can become so extreme, that carbon detonation can occur in the centre of the white dwarf, and that is a runaway thermonuclear reaction – that carbon burns in astronomer speak into more massive elements…"

Prof. Mark Sullivan
Are we stardust, ashes or just waste?

Burning is usually seen in scientific terms as another word for combustion. So, the nuclear fusion, 'burning' "in astronomer speak" of its nuclear 'fuel' in a star represents an extension of the original meaning by analogy with combustion. 9 Material that is deliberately used to maintain a fire is fuel. A furnace is an artefact deliberately built to maintain a high temperature – the nuclear furnace in a star is not an artefact but a naturally occurring system (gravity holds the material in place), but is metaphorically a furnace. A runaway is a fugitive who has absconded – so to describe a thermonuclear reaction (which is not going anywhere in spatial terms) as 'runaway' adopts what was a metaphor. (Astronomers also use the term 'runaway' to label a class of star that seem to be moving especially fast compared with the interstellar medium – a somewhat more direct borrowing of the usual meaning of 'runaway'.)

To consider us to be made from 'nuclear waste' relies on seeing the star-as-nuclear-furnace as analogous to a nuclear pile in a power station. In nuclear power stations we deliberately process fissile material to allow us to generate electrical power: and material is produced as a by-product of this process (that is, it is a direct product of the natural nuclear processes, but a by-product of our purposeful scheme to generate electricity). To consider something waste means making a value judgement.

If the purpose of a star is to shine (a teleological claim) and the fusion of hydrogen is the means to achieve that end, then the material produced in that process which is no longer suitable as 'fuel' can be considered 'waste'. If the universe does not have any purpose(s) for stars then there is no more basis for seeing this material as waste than there is for seeing stars themselves as the waste products of a process that causes diffuse matter to come together into local clumps. That is, this is an anthropocentric perspective that values stars as of more value than either the primordial matter from which they formed, or the 'dead' matter they will evolve into when they no longer shine 'for us'. Nature may not have such favourites! If it has a purpose, then stars seem to only be intermediate steps towards its ultimate end.


What does support the turtle? Surely, it's metaphors all the way down.
(Source: Pintrest)


Sources cited:

Notes:

1 It may seem fanciful that we give a specific individual tree a proper name but should a child inherently appreciate that we commonly name individual hamsters (say, or ships, or roads), but not individual trees? 'Major Oak' is a particular named Oak tree in Sherwood Forest, so the idea is not ridiculous. (It is very large, but apparently the name derives from it being described by an author with the army rank of major. Of course, this term for a soldier leading others derives metaphorically from a Latin word meaning bigger, so…)


2 "So how do we bridge between dogs and trees on one hand and electrons and the strong nuclear force on the other (so to speak!)? The answer is we build using analogy and we talk about those constructions using a great deal of metaphor."

  • We understand what is meant by bridge here in relation to an actual bridge that physically links two places – such as locations on opposite sides of a river or railway line.
  • There is no actual building up of materials, but we understand how we can 'build' in the abstract by analogy.
  • These things are not actually at hand, but we make a metaphorical comparison in terms of distinguishing items held in 'opposite' hands. We understand what is meant by a great deal of something abstract by analogy with a great deal of something we can directly experience, e.g., sand, water, etcetera.

Justice personified, on the one hand weighing up the evidence and on the other imposing sanctions

(Image by Sang Hyun Cho from Pixabay)


We construct scientific concepts and models and theories by analogy with how we construct material buildings – we put down foundations then build up brick by brick so that the top of the structure is only very indirectly supported by the ground.

(Image by joffi from Pixabay)


3 A point is a hypothetical, infinitesimally small, location in space, which is not something a person could actually make. The 'point' of an argument is metaphorically like the point of a pencil or spear which is metaphorically an approximation to an actual point. Of course, we (adult members of the English language community) all know what is meant by the point of an argument – but people new to a language (such as young children) have to find this out, without someone holding up the point of an argument for them to learn to recognise.


4 In part, this means linguistic resources. Each individual person has a unique vocabulary, and even though sharing most words with others, often has somewhat unique ranges of application of those words. But it also refers to personal experiences that can be drawn upon (e.g., having cared for an ill relative, having owned a pet, having undertaken part-time work in a hospital pharmacy, having been taken to work by a parent…) and the cultural referents that are commonly discussed in discourse (cultural icons like the Mona Lisa or Beethoven's fifth symphony; familiarity with some popular television show or film; appreciating that Romeo and Juliet were tragic lovers, or that Gandhi is widely considered a moral role model, and so forth.)


"Penny, I'm a physicist. I have a working knowledge of the entire universe and everything it contains."

"Who's Radiohead?"

"I have a working knowledge of the important things in the universe."

Still from 'The Big Bang Theory' (Chuck Lorre Productions / Warner Bros. Television)


The interpretive resources are whatever mental resources are available to help make sense of communication.


5 I am using the term concept in an 'inclusive' sense (Taber, 2019), in that whenever a person can offer a discrimination about whether something is an example of some category, then they hold a concept (vague or detailed; simple or complex; canonical or alternative).

That is, if someone can (beyond straight guesswork) try to answer one of the questions "what is X? ", "is this an example of X?" or "can you suggests an example of X?", then they have a relevant concept – where X could be…

  • a beaker
  • a force
  • a bacterium
  • opaque
  • a transition metal
  • an isomer
  • distillation
  • neutralisation
  • a representation of the ideal gas law
  • and so forth

Read more about concepts


6 The earliest reference to 'host galaxies' I found in a quick search of the scientific literature was from 1972 in a paper which used the term 'host galaxy' 8 times, including,

"We estimated the distances [of observed supernovae]…by four different methods:

  • (1) Estimating the absolute luminosity of the host galaxy.
  • (2) Estimating the absolute luminosity of the supernova.
  • (3) Using the measured redshift of the host galaxy and assuming the Hubble constant H = 75 km (s Mpc)-1
  • (4) Identifying the host galaxy with a cluster of galaxies for which the distance from Earth had already been estimated.
Ulmer, Grace, Hudson & Schwartz, 1972, p.209

The term 'host galaxy' was not introduced or defined in the paper, suggesting that either it was already in common use as a scientific term (and so a dead metaphor within the astronomical community) in 1972 or Ulmer and colleagues assumed it was obvious enough not to need explanation.


7 It should be pointed out that 'In Our Time' is not presented as succession of mini-lectures, or as a tightly scripted programme, but as a conversation between Melvyn as his guests. Of course, there is some level of preparation by those involved, but in adopting a conversational style, avoiding the sense of prepared statements, it is inevitable that a guest's language will sometimes lack the precision of a drafted and much revised account.


8 A supernova may appear as a new star in the sky if it is so far away that the star was not previously detectable, or as a known star quick;y becoming very much brighter.


9 One should be careful in making such equivalences, as in that although we may equate burning with combustion, burning is an everyday ('life world') phenomenon, and combustion is a scientific concept: often our scientific concepts are more precisely defined than the related everyday terms. (Which is why melting has a broader meaning in everyday life {the sugar melts in the hot tea; the stranger melted away into the mist} than it does in science.) But although we might say, as suggested earlier in the text, we have been burned by exposure to the sun's ultraviolet rays, or by contact with a caustic substance, in those contexts we are unlikely to consider our skin as 'fuel' for the process.


The passing of stars

Birth, death, and afterlife in the universe


Keith S. Taber


stars are born, start young, live, sometimes living alone but sometimes not, sometimes have complicated lives, have lifetimes, reach the end of their lives, and die, so, becoming dead, eventually long dead; and, indeed, there are generations of stars with life cycles


One of the themes I keep coming back to here is the challenge of communicating abstract scientific ideas. Presenting science in formal technical language will fail to engage most general audiences, and will not support developing understanding if the listener/reader cannot make good sense of the presentation. But, if we oversimplify, or rely on figures of speech (such as metaphors) in place of formal treatments of concepts, then – even if the audience does engage and make sense of the presentation – audience members will be left with a deficient account.

Does that matter? Well, often a level of understanding that provides some insight into the science is far better than the impression that science is so far detached from everyday experience that it is not for most people.

And the context matters.

Public engagement with science versus science education

In the case of a scientist asked to give a public talk, or being interviewed for news media, there seems a sensible compromise. If people come away from the presentation thinking they have heard about something interesting, that seems in some way relevant to them, and that they understood the scientist's key messages, then this is a win – even if it is only a shift to an over-simplified account, or an understanding in terms of a loose analogy. (Perhaps some people will want to learn more – but, even if not, surely this meets some useful success criterion?)

In this regard science teachers have a more difficult job to do. 1 The teacher is not usually considered successful just because the learners think they have understood teaching, but rather only when the learners can demonstrate that what they have learnt matches a specified account set out as target knowledge in the curriculum. This certainly does not mean a teacher cannot (or should not) use simplification and figures of speech and so forth – this is often essential – but rather that such such moves can usually only be seen as starting points in moving learners onto temporary 'stepping stones' towards creditable knowledge that will eventually lead to test responses that will be marked correct.


An episode of 'In Our Time' on 'The Death of Stars'
"The image above is of the supernova remnant Cassiopeia A, approximately 10,000 light years away, from a once massive star that died in a supernova explosion that was first seen from Earth in 1690"

The Death of Stars

With this in mind, I was fascinated by an episode of the BBC's radio show, 'In Our Time' which took as its theme the death of stars. Clearly, this falls in the category of scientists presenting to a general public audience, not formal teaching, and that needs to be borne in mind as I discuss (and perhaps even gently 'deconstruct') some aspects of the presentation from the perspective of a science educator.

The show was broadcast some months ago, but I made a note to revisit it because I felt it was so rich in material for discussion, and I've just re-listened. I thought this was a fascinating programme, and I think it is well worth a listen, as the programme description suggests:

"Melvyn Bragg and guests discuss the abrupt transformation of stars after shining brightly for millions or billions of years, once they lack the fuel to counter the force of gravity. Those like our own star, the Sun, become red giants, expanding outwards and consuming nearby planets, only to collapse into dense white dwarves. The massive stars, up to fifty times the mass of the Sun, burst into supernovas, visible from Earth in daytime, and become incredibly dense neutron stars or black holes. In these moments of collapse, the intense heat and pressure can create all the known elements to form gases and dust which may eventually combine to form new stars, new planets and, as on Earth, new life."

https://www.bbc.co.uk/sounds/play/m0018128

I was especially impressed by the Astronomer Royal, Professor Martin Rees (and not just because he is a Cambridge colleague) who at several points emphasised that what was being presented was current understanding, based on our present theories, with the implication that this was open to being revisited in the light (sic) of new evidence. This made a refreshing contrast to the common tendency in some popular science programmes to present science as 'proven' and so 'certain' knowledge. That tendency is an easy simplification that distorts both the nature and excitement of science.

Read about scientific certainty in the media

Presenter Melvyn Bragg's other guests were Carolin Crawford (Emeritus Member of the Institute of Astronomy, and Emeritus Fellow of Emmanuel College, University of Cambridge) and Mark Sullivan (Professor of Astrophysics at the University of Southampton).

Public science communication as making the unfamiliar familiar

Science communicators, whether professional journalists or scientists popularising their work, face similar challenges to science teachers in getting across often complex and abstract ideas; and, like them, need to make the unfamiliar familiar. Science teachers are taught about how they need to connect new material with the learners' prior knowledge and experiences if it is to make sense to the students. But successful broadcasters and popularisers also know they need to do this, using such tactics as simplification, modelling, metaphor and simile, analogy, teleology, anthropomorphism and narrative.

There were quite a few examples of the speakers seeking to make abstract ideas accessible to listeners in such ways in this programme. However, perhaps the most common trope was one set up by the episode title, and one which could very easily slip under radar (so to speak). In this piece I examine the seemingly ubiquitous metaphor (if, indeed, it is to be considered a metaphor!) of stars being alive; in a sequel I discuss some of the wide range of other figures of speech adopted in this one science programme.

Science: making the familiar, unfamiliar?

If when working as a teacher I saw a major part of my work as making the unfamiliar familiar to learners, in my research there was a sense in which I needed to make the familiar unfamiliar. Often, the researcher needs to focus afresh on the commonly 'taken-for-granted' and to start to enquire into it as if one does not already know about it. That is, one needs to problematise the common-place. (This reflects a process sometimes referred to as 'bracketing'.)

To give one obvious example. Why do some students do well in science tests and others less well? Obviously, because some learners are better science students than others! (Clearly in some sense this is true – but is it just a tautology? 2) But one clearly needs to dig into this truism in more detail to uncover any insights that would actually be useful in supporting students and improving teaching!

The same approach applies in science. We do not settle for tautologies such as fire burns because fire is the process of burning, or acids are corrosive because acids are the category of substances which corrode; nor what are in effect indirect disguised tautologies such as heavy objects fall because they are largely composed of the element earth, where earth is the element whose natural place is at the centre of the world. (If that seems a silly example, it was the widely accepted wisdom for many centuries. Of course, today, we do not recognise 'earth' as a chemical element.)

I mention this, because I would like to invite readers to share with me in making the familiar unfamiliar here – otherwise you could easily miss my point.

"so much in the Universe, and much of our understanding of it, depends on changes in stars as they die after millions or billions of stable years"

Tag line for 'the Death of Stars'

The lives of stars

The episode opens with

"Hello. Across the universe, stars have been dying for millions of years…

Melvyn Bragg introducing the episode

The programme was about the death of stars – which directly implies stars die, and, so, also suggests that – before dying – they live. And there were plenty of references in the programme to reinforce this notion. Carolin Crawford suggested,

"So, essentially, a star's life, it can exist as a star, for as long as it has enough fuel at the right temperature at the right density in the core of the star to stall the gravitational collapse. And it is when it runs out of its fuel at the core, that's when you reach the end of its lifetime and we start going through the death processes."

Prof. Carolin Crawford talking on 'In Our Time'

Not only only do stars have lives, but some have much longer lives than others,

"…more massive stars can … build quite heavy elements at their cores through their lifetimes. And … they actually have shorter lifetimes – it is counter-intuitive, but they have to chomp through their fuel supply so furiously that they exhaust it more rapidly. So, the mass of the star dictates what happens in the core, what you create in the core, and it also determines the lifetime of the star."

"The mass of the star…determines the lifetime of the star….
our sun…we reckon it is about halfway through its lifetime, so stars like the sun have lifetimes of 10 billions years or so…"


Prof. Carolin Crawford talking on 'In Our Time'

This was not some idiosyncratic way that Professor Crawford had of discussing stars, as Melvyn's other guests also used this language. Here are some examples I noted:

  • "this is a dead, dense star" (Martin Rees)
  • "the lifetime of a stable star, we can infer the … life cycles of stars" (Martin Rees)
  • "stars which lived and died before our solar system formed…stars which have more complicated lives" (Martin Rees)
  • "those old stars" (Martin Rees)
  • "earlier generations of massive stars which had lived and died …those long dead stars" (Martin Rees)
  • "it is an old dead star" (Mark Sullivan)
  • "our sun…lives by itself in space. But most stars in the universe don't live by themselves…" (Mark Sullivan)
  • "two stars orbiting each other…are probably born with different masses" (Mark Sullivan)
  • "when [stars] die" (Mark Sullivan)
  • "when [galaxies] were very young" (Martin Rees)
  • "stars that reach the end point of their lives" (Carolin Crawford )
  • "a star that's younger" (Martin Rees)

So, in the language of astronomy, stars are born, start young, live; sometimes living alone but sometimes not, sometimes have complicated lives; have lifetimes, reach the end of their lives, and die, so, becoming dead, eventually long dead; and, indeed, there are generations of stars with life cycles.


The processes that support a star's luminosity come to an end: but does the star therefore die?

(Cover art for the Royal Philharmonic Orchestra's recording of David Bedford's composition Star's End. Photographer: Monique Froese)


Are stars really alive?

Presumably, the use of such terms in this context must have originally been metaphorical. Life (and so death) has a complex but well-established and much-discussed meaning in science. Living organisms have certain necessary characteristics – nutrition, (inherent) movement, irritability/sensitivity, growth, reproduction, respiration, and excretion, or some variation on such a list. Stars do not meet this criterion. 3 Living organisms maintain a level of complex organisation by making use of energy stores that allow them to decrease entropy internally at the cost of entropy increase elsewhere.

Animals and decomposers (such as fungi) take in material that can be processed to support their metabolism and then the 'lower quality' products are eliminated. Photosynthetic organisms such as green plants have similar metabolic processes, but preface these by using the energy 'in' sunlight to first facilitate endothermic reactions that allow them to build up the material used later for their mortal imperative of working against the tendencies of entropy. Put simply, plants synthesise sugar (from carbon dioxide and water) that they can distribute to all their cells to support the rest of the metabolism (a complication that is a common source of alternative conceptions {misconceptions} to learners 4).

By contrast, generally speaking, during their 'lifetimes', stars only gain and lose marginal amounts of material (compared with a 70 kg human being that might well consume a tonne of food each year) – and do not have any quality control mechanism that would lead to them taking in what is more useful and expelling what is not.

As far as life on earth is concerned, virtually all of that complex organisation of living things depends upon the sun as a source of energy, and relies on the process by which the sun increases the universe's entropy by radiating energy from a relatively compact source into the diffuse vastness of space. 4 In other words, if anything, a star like our sun better reflects a dead being such as a felled tree or a zebra hunted down by a lion, providing a source of concentrated energy for other organisms feeding on its mortal remains!

Are the lives and deaths of stars simply pedagogical devices?

So, are stars really alive? Or is this just one example of the kind of rhetorical device I referred to above being adopted to help make the abstract unfamiliar becomes familiar? Is it the use of a familiar trope employed simply to aid in the communication of difficult ideas? Is this just a metaphor? That is,

  • Do stars actually die, or…
  • are they only figuratively alive and, so, only suffer (sic) a metaphorical death?

I do not think the examples I quote above represent a concerted targeted strategy by Professors Crawford, Rees and Sullivan to work with a common teaching metaphor for the sake of Melvyn and his listeners: but rather the actual language commonly used in the field. That is, the life cycles and lifetimes of stars have entered into the technical lexicon of the the science. If so, then stars do actually live and die, at least in terms of what those words now mean in the discipline of astronomy.

Gustav Strömberg referred to "the whole lifetime of a star" in a paper in the The Astrophysical Journal as long ago as 1927. He did not feel the need to explain the term so presumably it was already in use – or considered obvious. Kip Thorne published a paper in 1965 about 'Gravitational Collapse and the Death of a Star". In the first paragraph he pointed out that

"The time required for a star to consume its nuclear fuel is so long (many billions of years in most cases) that only a few stars die in our galaxy per century; and the evolution of a star from the end point of thermonuclear burning to its final dead state is so rapid that its death throes are observable for only a few years."

Thorne, 1965, p.1671

Again, the terminology die/death/dead is used without introduction or explanation.

He went on to refer to

  • deaths of stars
  • different types of death
  • final resting states

before shifting to what a layperson would recognise as a more specialist, technical, lexicon (zero point kinetic energy; Compton wavelength of an electron; neutron-rich nuclei; photodistintegration; gravitational potential energy; degenerate Fermi gas; lambda hyperons; the general relativity equation of hydrostatic equilibrium; etc.), before reiterating that he had been offering

"the story of the death of a star as predicted by a combination of nuclear theory, elementary particle theory, and general relativity"

Thorne, 1965, p.1678

So, this was a narrative, but one intended to be fit for a professional scientific audience. It seems the lives and deaths of stars have been part of the technical vocabulary of astronomers for a long time now.

When did scientists imbue stars with life?

Modern astronomy is quite distinct from astrology, but like other sciences astronomy developed from earlier traditions and at one time astronomy and astrology were not so discrete (an astronomical 'star' such as Johannes Kepler was happy to prepare horoscopes for paying customers) and mythological and religious aspects of thinking about the 'heavens' were not so well compartmentalised from what we would today consider as properly the realm of the scientific.

In Egyptian religion, Ra was both a creative force and identified with the sun. Mythology is full of origin stories explaining how the stars had been cast there after various misadventures on earth (the Greek myths but also in other traditions such as those of the indigenous North American and Australian peoples 5) and we still refer to examples such as the seven sisters and Orion with the sword hanging in his belt. The planets were associated with different gods – Venus (goddess of love), Mars (the god of war), Mercury (the messenger of the gods), and so on.6 It was traditional to refer to some heavenly bodies as gendered: Luna is she, Sol is he, Venus is she, and so on. This usage is sometimes found in scientific writing on astronomy.

Read about examples of personification in scientific writing

Yet this type of poetic license seems unlikely to explain the language of the life cycles of stars, even if there are parallels between scientific and poetic or spiritual accounts,

Stars are celestial objects having their own life cycles. Stars are born, grow up, mature and eventually die. …The author employs inductive and deductive analysis of the verses of the Quran and the Hadith texts related with the life and death of stars. The results show that the life and death of the stars from Islamic and Modern astronomy has some similarities and differences.

Wahab, 2015

After all, the heavenly host of mythology comprised of immortals, if sometimes starting out as mortals subsequently given a kind of immorality by the Gods when being made into stars. Indeed the classical tradition supported by interpretation of Christian orthodoxy was that unlike the mundane things of earth, the heavens were not subject to change and decay – anything from the moon outwards was perfect and unchanging. (This notion was held onto by some long after it was established that comets with their varying paths were not atmospheric phenomena – indeed well into the twentieth century some young earth creationists were still insisting in the perfect, unchanging nature of the heavens. 7)

So, presumably, we need to look elsewhere to find how science adopted life cycles for stars.

A natural metaphor?

Earlier in this piece I asked readers to bear with me, and to join with me in making the familiar unfamiliar, to 'bracket' the familiar notion that we say starts are born, live and later die, and to problematise it. In one scientific sense stars cannot die – as they were never alive. Yet, I accept this seems a pretty natural metaphor to use. Or, at least, it seems a natural metaphor to those who are used to hearing and reading it. A science teacher may be familiar with the trope of stars being born, living, and dying – but how might a young learner, new to astronomical ideas, make sense of what was meant?

Now, there is a candidate project for anyone looking for a topic for a student research assignment: how would people who have never previously been exposed to this metaphor respond to the kinds of references I've discussed above? I would genuinely like to know what 'naive' people would make of this 8 – would they just 'get' the references immediately (appreciate in what sense stars are born, live, and die); or, would it seem a bizarre way of talking about stars? Given how readily people accept and take up anthropomorphic references to molecules and viruses and electrons and so forth, I find the question intriguing.

Read about anthropomorphism in science

What makes a star alive or dead?

Even if for the disciplinary experts the language of living stars and their life cycles has become a 'dead metaphor 'and is now taken (i.e., taken for granted) as technical terminology – the novice learner, or lay member of the public listening to a radio show, still has to make sense of what it means to say a star is born, or is alive, or is nearing the end of its life, or is dead.

The critical feature discussed by Professors Crawford, Rees and Sullivan concerns an equilibrium that allow a star to exist in a balance between the gravitational attraction of its component matter and the pressure generated through its nuclear reactions.

A star forms when material comes together under its mutual gravitational attraction – and as the material becomes denser it gets hotter. Eventually a sufficient density and temperature is reached such that there is 'ignition' – not in the sense of chemical combustion, but self-sustaining nuclear processes occur, generating heat. This point of ignition is the 'birth' of the star.

Fusion processes continue as long as there is sufficient fissionable material, the 'fuel' that 'feeds' the nuclear 'furnace' (initially hydrogen, but depending on the mass of the star there can be a series of reactions with products from one stage undergoing further fusion to form even heavier elements). The life time of the star is the length of time that such processes continue.

Eventually there will not be sufficient 'fuel' to maintain the level of 'burning' that is needed to allow the ball of material to avoid ('resist') gravitational collapse. There are various specific scenarios, but this is the 'death' of the star. It may be a supernova offering very visible 'death throes'.

The core that is left after this collapse is a 'dead' star, even if it is hot enough to continue being detectable for some time (just as it takes time for the body of a homeothermic animal that dies to cool to the ambient temperature).

It seems then that there is a kind of analogy at work here.

Organisms are alive as long as they continue to metabolise sufficiently in order to maintain their organisation in the face of the entropic tendency towards disintegration and dispersal.Stars are alive as long as they exhibit sufficient fusion processes to maintain them as balls of material that have much greater volumes, and lower densities than the gravitational forces on their component particles would otherwise lead to.

It is clearly an imperfect analogy.

Organisms base metabolism on a through-put of material to process (and in a sense 'harvest' energy sources).Stars do acquire new materials and eject some, but this is largely incidental and it is essentially the mass of fissionable material that originally comes together to initiate fusion which is 'harvested' as the energy source.
Organisms may die if they cannot access external food sources, but some die of built-in senescence and others (those that reproduce by dividing) are effectively immortal.

We (humans) die because the amazing self-constructing and self-repairing abilities of our bodies are not perfect, and somatic cells cannot divide indefinitely to replace no longer viable cells.
Stars 'die' because they run out of their inherent 'fuel'.

Stars die when the hydrogen that came together to form them has substantially been processed.

Read about analogy in science

One person's dead star is another person's living metaphor

So, do stars die? Yes, because astronomers (the experts on stars) say they do, and it seems they are not simply talking down to the rest of us. The birth and death of stars seems to be based on an analogy: an analogy which is implicit in some of the detailed discussion of star life cycles. However, through the habitual use of this analogy, terms such as the birth, lifetimes, and death of stars have been adopted into mainstream astronomical discourse as unmarked (taken-for-granted) language such that to the uninitiated they are experienced as metaphors.

And these perspectival metaphors 9 become extended to describe stars that are considered young, old, dying, long dead, and so forth. These terms are used so readily, and so often without a perceived need for qualification or explanation, that we might consider them 'dead' metaphors within astronomical discourse – terms of metaphorical origin but now so habitually used that they have come to be literal (stars are born, they do have lifetimes, they do die). Yet for the uninitiated they are still 'living' metaphors, in the sense that the non-expert needs to work out what it means when a star is said to live or die.

There is a well recognised distinction between live and dead metaphors. But here we have dead-to-the-specialists metaphors that would surely seem to be non-literal to the uninitiated. These terms are not explained by experts as they are taken by them as literal, but they cannot be understood literally by the novice, for whom they are still metaphors requiring interpretation. That is, they are perspectival metaphors zombie words that may seem alive or dead (as figures of speech) according to audience, and so may be treated as dead in professional discourse, but may need to be made undead when used in communicating to the public.


Other aspects of the In Our Time discussion of 'The death of stars' are explored as The complicated social lives of stars: stealing, escaping, and blowing-off in space


Sources cited:
  • Strömberg, G. (1927). The Motions of Giant M Stars. The Astrophysical Journal, 65, 238.
  • Thorne, K. S. (1965). Gravitational Collapse and the Death of a Star. Science, 150(3704), 1671-1679. http://www.jstor.org.ezp.lib.cam.ac.uk/stable/1717408
  • Wahab, R. A. (2015). Life and death of stars: an analysis from Islamic and modern astronomy perspectives. International Proceedings of Economics Development and Research, 83, 89.

Notes

1 In this regard, but not in all regards. As I have suggested here before, the teacher usually has two advantages:

a) generally, a class has a limited spread in terms of the audience background: even a mixed ability class is usually from a single school year (grade level) whereas the public presentation may be addressing a mixed audience of all ages and levels of education.

b) usually a teacher knows the class, and so knows something about their starting points, and their interests


2 Some students do well in science tests and others less well.

If we say this is because

  • some learners are better science students than others
  • and settle for defining better science students as those who achieve good results in formal science tests (that is tests as currently administered, based on the present curriculum, taught in our usual way)

then we are simply 'explaining' the explicandum (i.e., some students do better on science tests that others) by a rephrasing of what is to be explained (some students are better science students: that is, they perform well in science tests!)

Read about tautology


3 Criterion (singular) as a living organism has to satisfy the entries in the list collectively. Each entry is of itself a necessary, but not sufficient, condition.


4 A simple misunderstanding is that animals respire but plants photosynthesise.

In a plant in a steady state, the rates of build-up and break down of sugars would be balanced. However, plants must photosynthesise more than they respire overall in order to to grow and ultimately to allow consumers to make use of them as food. (This needs to be seen at a system level – the plant is clearly not in any inherent sense photosynthesising to provide food for other organisms, but has evolved to be a suitable nutrition source as it transpires [no pun intended] that increases the fitness of plants within the wider ecosystem.)

A more subtle alternative conception is that plants photosynthesise during the day when they are illuminated by sunlight (fair enough) and then use the sugar produced to respire at night when the sun is not available as a source of energy. See, for example, 'Plants mainly respire at night because they are photosynthesising during the day'.

Actually cellular processes require continuous respiration (as even in the daytime sunlight cannot directly power cellular metabolism, only facilitate photosynthesis to produce the glucose that that can be oxidised in respiration).

Schematic reflection of the balance between how photosynthesis generates resources to allow respiration – typically a plant produces tissues that feed other organisms.
The area above the line represents energy from sunlight doing work in synthesising more complex substances. The area below the lines represents work done when the oxidation of those more complex substances provides the energy source for building and maintaining an organism's complex organisation of structure and processes (homoestasis).

5 Museum Victoria offers a pdf that can be downloaded and copied by teachers to teach about how "How the southern night sky is seen by the Boorong clan from north-west Victoria":

'Stories in the Stars – the night sky of the Boorong people' shows the constellations as recognised by this group, the names they were given, and the stories of the people and creatures represented.

(This is largely based on the nineteenth century reports made by William Edward Stanbridge of information given by Boorong informants – see 'Was the stellar burp really a sneeze?')

The illustration shown here is of 'Kulkunbulla' – a constellation that is considered in the U.K. to be only part of the constellation known here as Orion. (Constellations are not actual star groupings, but only what observers have perceived as stars seeming to be grouped together in the sky – the Boorong's mooting of constellations is no more right or wrong than that suggested in any other culture.)


6 The tradition was continued into modern times with the discovery of the planets that came to be named Neptune and Uranus after the Gods of the sea and sky respectively.


7 Creationism, per se, is simply the perspective or belief that the world (i.e., Universe) was created by some creator (God) and so creationism as such is not necessarily in conflict with scientific accounts. The theory of the big bang posits that time, space and matter had a beginning with an uncertain cause which could be seen as God (although some theorists such as Professor Roger Penrose develop theories which posit a sequence of universes that each give rise to the next and that could have infinite extent).

Read about science and religion

Young earth creationists, however, not only believe in a creator God (i.e., they are creationists), but one who created the World no more than about 10 thousand years ago (the earth is young!), rather than over 13 billion years ago. This is clearly highly inconsistent with a wide range of scientific findings and thinking. If the Young Earth Creationists are right, then either

  • a lot of very strongly evidenced science is very, very wrong
  • some natural laws (e.g. radioactive decay rates) that now seem fixed must have changed very substantially since the creation
  • the creator God went to a lot of trouble to set up the natural world to present a highly misleading account of its past history

8 I am not using the term naive here in a discourteous or demeaning way, but in a technical sense of someone who is meeting something for the first time.


9 That is, terms that will appear as metaphors from the perspective of the uninitiated, but now seem literal terms from the perspective of the specialist. We cannot simply say they are or are not metaphors, without asking 'for whom?'


Was the stellar burp really a sneeze?

Pulling back the veil on an astronomical metaphor


Keith S. Taber


It seems a bloated star dimmed because it sneezed, and spewed out a burp.


'Pardon me!' (Image by Angeles Balaguer from Pixabay)

I was intrigued to notice a reference in Chemistry World to a 'stellar burp'.

"…the dimming of the red giant Betelgeuse that was observed in 2019…was later attributed to a 'stellar burp' emitting gas and dust which condensed and then obscured light from the star"

Motion, 2022

The author, Alice Motion, quoted astrophysics doctoral candidate and science communicator Kirsten Banks commenting that

"In recorded history…It's the first time we've ever seen this happen, a star going through a bit of a burp"

Kirsten Banks quoted in Chemistry World

although she went on to suggest that the Boorong people (an indigenous culture from an area of the Australian state Victoria) had long ago noticed a phenomena that became recorded in their oral traditions 1, which

"was actually the star Eta Carinae which went through a stellar burp, just like Betelgeuse did"

Kirsten Banks quoted in Chemistry World

Composite image (optical appearing as white; ultraviolet as cyan; X-rays as purple) of Eta Carinae,

Source: NASA


Clearly a star cannot burp in the way a person can, so I took this to be a metaphor, and wondered if this was a metaphor used in the original scientific report.

A clump and a veil

The original report (Montargès, et al, 2021) was from Nature, one of the most prestigious science research journals. It did not seem to have any mention of belching. This article reported that,

"From November 2019 to March 2020, Betelgeuse – the second-closest red supergiant to Earth (roughly 220 parsecs, or 724 light years, away) – experienced a historic dimming of its visible brightness…an event referred to as Betelgeuse's Great Dimming….Observations and modelling support a scenario in which a dust clump formed recently in the vicinity of the star, owing to a local temperature decrease in a cool patch that appeared on the photosphere."

Montargès, et al., 2012, p.365

So, the focus seemed to be not on any burping but a 'clump' of material partially obscuring the star. That material may well have arisen from the star. The paper in nature suggests that Betelgeuse may loose material through two mechanisms: both by a "smooth homogeneous radial outflow that consists mainly of gas", that is a steady and continuous process; but also "an episodic localised ejection of gas clumps where conditions are favourable for efficient dust formation while still close to the photosphere" – that is the occasional, irregular, 'burp' of material, that then condenses near the star. But the word used was not 'burp', but 'eject'.

A fleeting veil

Interestingly the title of the article referred to "A dusty veil shading Betelgeuse". The 'veil' (another metaphor) only seemed to occur in the title. There is an understandable temptation, even in scholarly work, to seek a title which catches attention – perhaps simplifying, alliterating (e.g., 'mediating mental models of metals') or seeking a strong image ('…a dusty veil shading…'). In this case, the paper authors clearly thought the metaphor did not need to be explained, and that readers would understand how it linked to the paper content without any explicit commentary.


WordFrequency in Nature article
clump(s)25 (excluding reference list)
eject(ed, etc.)4
veil1 (in title only)
burp0
blob0
There's no burping in Nature

The European Southern Observatory released a press release (sorry, a 'science release') about the work entitled 'Mystery of Betelgeuse's dip in brightness solved', that explained

"In their new study, published today in Nature, the team revealed that the mysterious dimming was caused by a dusty veil shading the star, which in turn was the result of a drop in temperature on Betelgeuse's stellar surface.

Betelgeuse's surface regularly changes as giant bubbles of gas move, shrink and swell within the star. The team concludes that some time before the Great Dimming, the star ejected a large gas bubble that moved away from it. When a patch of the surface cooled down shortly after, that temperature decrease was enough for the gas to condense into solid dust.

'We have directly witnessed the formation of so-called stardust,' says Montargès, whose study provides evidence that dust formation can occur very quickly and close to a star's surface. 'The dust expelled from cool evolved stars, such as the ejection we've just witnessed, could go on to become the building blocks of terrestrial planets and life', adds Emily Cannon, from KU Leuven, who was also involved in the study."

https://www.eso.org/public/news/eso2109/

So, again, references to ejection and a veil – but no burping.

Delayed burping

Despite this, the terminology of the star burping, seems to have been widely taken up in secondary sources, such as the article in Chemistry World

A New Scientist report suggested "Giant gas burp made Betelgeuse go dim" (Crane, 2021). On the website arsTECHNICA, Jennifer Ouellette wrote that "a cold spot and a stellar burp led to strange dimming of Betelgeuse".

On the newsite Gizmodo, George Dvorsky wrote a piece entitled "A dusty burp could explain mysterious dimming of supergiant star Betelgeuse". Whilst the term burp was only used in the title, Dvorsky was not shy of making other corporeal references,

"a gigantic dust cloud, which formed after hot, dense gases spewed out from the dying star. Viewed from Earth, this blanket of dust shielded the star's surface, making it appear dimmer from our perspective, according to the research, led by Andrea Dupree from the Centre for Astrophysics at Harvard & Smithsonian.

A red supergiant star, Betelgeuse is nearing the end of its life. It's poised to go supernova soon, by cosmological standards, though we can't be certain as to exactly when. So bloated is this ageing star that its diameter now measures 1.234 million kilometers, which means that if you placed Betelgeuse at the centre of our solar system, it would extend all the way to Jupiter's orbit."

The New York Times published an article (June 17, 2021) entitled "Betelgeuse Merely Burped, Astronomers Conclude", where author Dennis Overbye began his piece:

"Betelgeuse, to put it most politely, burped."

The New York Times

Overbye also reports the work from the Nature paper

"We have directly witnessed the formation of so-called stardust," Miguel Montargès, an astrophysicist at the Paris Observatory, said in a statement issued by the European Southern Observatory. He and Emily Cannon of Catholic University Leuven, in Belgium, were the leaders of an international team that studied Betelgeuse during the Great Dimming with the European Southern Observatory's Very Large Telescope on Cerro Paranal, in Chile.

Parts of the star, they found, were only one-tenth as bright as normal and markedly cooler than the rest of the surface, enabling the expelled blob to cool and condense into stardust. They reported their results on Wednesday in Nature."

The New York Times

So, instead of the clumps referred to in the Nature article as ejected, we now have an expelled blob (neither word appears in the nature article itself). Overbye also explains how this study followed up on earlier observations of the star

"Their new results would seem to bolster findings reported a year ago by Andrea Dupree of the Harvard-Smithsonian Center for Astrophysics and her colleagues, who detected an upwelling of material on Betelgeuse in the summer of 2019.

'We saw the material moving out through the chromosphere in the south in September to November 2019,', Dr. Dupree wrote in an email. She referred to the expulsion as 'a sneeze.'

The New York Times

'…material moving out through the chromosphere in the south…': Hubble space telescope images of Betelgeuse (Source: NASA) 2

Bodily functions and stellar processes

I remain unsure why, if the event was originally considered a sneeze, it became transformed into a burp. However the use of such descriptions is not so unusual. Metaphor is a common tool in science communication to help 'make the unfamiliar familiar' by describing something abstract or out-of-the-ordinary in more familiar terms.

Read about metaphors in science

Here, the body [sic] of the scientific report keeps to technical language although a metaphor (the dust cloud as a veil) is considered suitable for the title. It is only when the science communication shifts from the primary literature (intended for the science community) into more popular media aimed at a wider audience that the physical processes occurring in a star became described in terms of our bodily functions. So, in this case, it seems a bloated star dimmed because it sneezed, and spewed out a burp.


Coda

The astute reader may have also noticed that the New York Times article referred to Betelgeuse as an "ageing star" that is "nearing the end of its life": terms that imply a star is a living, and mortal, being. This might seem to be journalistic license, but the NASA website from which the sequence of Betelgeuse images above are taken also refers to the star as ageing (as well as being 'petulant' and 'injured').2 NASA employs scientifically qualified people, but its public websites are intended for a broad, general audience, perhaps explaining the anthropomorphic references.

Thus, we might understand references to stars as alive as being a metaphorical device used in communicating astronomical ideas to the general public. Yet, an examination of the scientific literature might instead suggest instead that astronomers DO consider stars to be alive. But, that is a topic for another piece.


Work cited:
  • Crane, L. (2021). Giant gas burp made Betelgeuse go dim. New Scientist, 250(3340), 22. doi:10.1016/S0262-4079(21)01094-0
  • Hamacher, D. W., & Frew, D. J. (2010). An aboriginal Australian record of the great eruption of Eta Carinae. Journal of Astronomical History and Heritage, 13(3), 220-234.
  • Montargès, M., Cannon, E., Lagadec, E., de Koter, A., Kervella, P., Sanchez-Bermudez, J., . . . Danchi, W. (2021). A dusty veil shading Betelgeuse during its Great Dimming. Nature, 594(7863), 365-368. doi:10.1038/s41586-021-03546-8
  • Motion, A. 2022, Space for more science. Astrophysics and Aboriginal astronomy on TikTok, Chemistry World, December 2022, p.15 (https://www.chemistryworld.com/opinion/space-for-more-science/4016585.article)

Notes

1 William Edward Stanbridge (1816-1894) was an Englishman who moved to Australia in 1841. He asked Boorong informants about their astronomy, and recorded their accounts. He presented a report to the Philosophical Institute of Victoria in 1857 and published two papers (Hamacher & Frew, 2010). The website Australian Indigenous Astronomy explains that

"The larger star of [of the binary system] Eta Car is unstable and undergoes occasional violent outbursts, where it sheds material from its outer shells, making it exceptionally bright.  During the 1840s, Eta Car went through such an outburst where it shed 20 solar masses of its outer shell and became the second brightest star in the night sky, after Sirius, before fading from view a few years later.  This event, commonly called a "supernova-impostor" event, has been deemed the "Great Eruption of Eta Carinae".  The remnant of this explosion is evident by the Homunculus Nebulae [see figure above – nebulae are anything that appears cloud-like to astronomical observation].  This identification shows that the Boorong had noted the sudden brightness of this star and incorporated it into their oral traditions."

Duane Hamacher

A paper in the Journal of Astronomical History and Heritage concludes that

"the Boorong people observed 𝜂 Carinae in the nineteenth century, which we identify using Stanbridge's description of its position in Robur Carolinum, its colour and brightness, its designation (966 Lac, implying it is associated with the Carina Nebula), and the relationship between stellar brightness and positions of characters in Boorong oral traditions. In other words, the nineteenth century outburst of 𝜂 Carinae was recognised by the Boorong and incorporated into their oral traditions"

Hamacher & Frew 2010, p.231

2 The images reproduced here are presented on a NASA website under the heading 'Hubble Sees Red Supergiant Star Betelgeuse Slowly Recovering After Blowing Its Top'. This is apparently not a metaphor as the site informs readers that"Betelgeuse quite literally blew its top in 2019". Betelgeuse is described as a "monster star", and its activity as "surprisingly petulant behaviour" and a "titanic convulsion in an ageing star", such that "Betelgeuse is now struggling to recover from this injury."

This seems rather anthropomorphic – petulance and struggle are surely concepts that refer to sentient deliberate actors in the world, not massive hot balls of gas. However, anthropomorphic narratives are often used to make scientific ideas accessible.

Read about anthropomorphism

The recovery (from 'injury') is described in terms of two similes,

"The star's interior convection cells, which drive the regular pulsation may be sloshing around like an imbalanced washing machine tub, Dupree suggests. … spectra imply that the outer layers may be back to normal, but the surface is still bouncing like a plate of gelatin dessert [jelly] as the photosphere rebuilds itself."

NASA Website

Read about science similes


Cells are buzzing cities that are balloons with harpoons

What can either wander door to door, or rush to respond; and when it arrives might touch, sniff, nip, rear up, stroke, seal, or kill?


Keith S. Taber


a science teacher would need to be more circumspect in throwing some of these metaphors out there, without then doing some work to transition from them to more technical, literal, and canonical accounts


BBC Radio 4's 'Start the week' programme is not a science programme, but tends to invite in guests (often authors of some kind) each week according to some common theme. This week there was a science theme and the episode was titled 'Building the Body, Opening the Heart', and was fascinating. It also offers something of a case study in how science gets communicated in the media.


Building the Body, Opening the Heart

The guests all had life-science backgrounds:

Their host was geneticist and broadcaster Adam Rutherford.

Communicating science through the media

As a science educator I listen to science programmes both to enhance and update my own science knowledge and understanding, but also to hear how experts present scientific ideas when communicating to a general audience. Although neither science popularisation nor the work of scientists in communicating to the public is entirely the same as formal teaching (for example,

  • there is no curriculum with specified target knowledge; and
  • the audiences
    • are not well-defined,
    • are usually much more diverse than found in classrooms, and
    • are free to leave at any point they lose interest or get a better offer),

they are, like teachers, seeking to inform and explain science.

Science communicators, whether professional journalists or scientists popularising their work, face similar challenges to science teachers in getting across often complex and abstract ideas; and, like them, need to make the unfamiliar familiar. Science teachers are taught about how they need to connect new material with the learners' prior knowledge and experiences if it is to make sense to the students. But successful broadcasters and popularisers also know they need to do this, using such tactics as simplification, modelling, metaphor and simile, analogy, teleology, anthropomorphism and narrative.

Perhaps one of the the biggest differences between science teaching and science communication in the media is the ultimate criterion of success. For science teachers this is (sadly) usually, primarily at least, whether students have understood the material, and will later recall it, sufficiently to demonstrate target knowledge in exams. The teacher may prefer to focus on whether students enjoy science, or develop good attitudes to science, or will consider working in science: but, even so, they are usually held to account for students' performance levels in high-stakes tests.

Science journalists and popularisers do not need to worry about that. Rather, they have to be sufficiently engaging for the audience to feel they are learning something of interest and understanding it. Of course, teachers certainly need to be engaging as well, but they cannot compromise what is taught, and how it is understood, in order to entertain.

With that in mind, I was fascinated at the range of ways the panel of guests communicated the science in this radio show. Much of the programme had a focus on cells – and these were described in a variety of ways.

Talking about cells

Dr Rutherford introduced cells as

  • "the basic building blocks of life on earth"; and observed that he had
  • "spent much of my life staring down microscopes at these funny, sort of mundane, unremarkable, gloopy balloons"; before suggesting that cells were
  • "actually really these incredible cities buzzing with activity".

Dr. Mukherjee noted that

"they're fantastical living machines" [where a cell is the] "smallest unit of life…and these units were built, as it were, part upon part like you would build a Lego kit"

Listeners were told how Robert Hooke named 'cells' after observing cork under the microscope because the material looked like a series of small rooms (like the cells where monks slept in monasteries). Hooke (1665) reported,

"I took a good clear piece of Cork, and with a Pen-knife sharpen'd as keen as a Razor, I cut a piece of it off, and…cut off from the former smooth surface an exceeding thin piece of it, and…I could exceeding plainly perceive it to be all perforated and porous, much like a Honey-comb, but that the pores of it were not regular; yet it was not unlike a Honey-comb in these particulars

…these pores, or cells, were not very deep, but consisted of a great many little Boxes, separated out of one continued long pore, by certain Diaphragms, as is visible by the Figure B, which represents a sight of those pores split the long-ways.

Robert Hooke

Hooke's drawing of the 'pores' or 'cells' in cork

Components of cells

Dr. Mukherjee described how

"In my book I sort of board the cell as though it's a spacecraft, you will see that it's in fact organised into rooms and there are byways and channels and of course all of these organelles which allow it to work."

We were told that "the cell has its own skeleton", and that the organelles included the mitochondria and nuclei ,

"[mitochondria] are the energy producing organelles, they make energy in most cells, our cells for instance, in human cells. In human cells there's a nucleus, which stores DNA, which is where all the genetic information is stored."


A cell that secretes antibodies which are like harpoons or missiles that it sends out to kill a pathogen?

(Images by by envandrare and OpenClipart-Vectors from Pixabay)


Immune cells

Rutherford moved the conversation onto the immune system, prompting 'Sid' that "There's a lovely phrase you use to describe T cells, which is door to door wanderers that can detect even the whiff of an invader". Dr. Mukherjee distinguished between the cells of the innate immune system,

"Those are usually the first responder cells. In humans they would be macrophages, and neutrophils and monocytes among them. These cells usually rush to the site of an injury, or an infection, and they try to kill the pathogen, or seal up the pathogen…"

and the cells of the adaptive system, such as B cells and T cells,

"The B cell is a cell that eventually becomes a plasma cell which secretes antibodies. Antibodies, they are like harpoons or missiles which the cell sends out to kill a pathogen…

[A T cell] goes around sniffing other cells, basically touching them and trying to find out whether they have been altered in some way, particularly if they are carrying inside them a virus or any other kind of pathogen, and if it finds this pathogen or a virus in your body, it is going to go and kill that virus or pathogen"


A cell that goes around sniffing other cells, touching them? 1
(Images by allinonemovie and OpenClipart-Vectors from Pixabay)

Cells of the heart

Another topic was the work of Professor Harding on the heart. She informed listeners that heart cells did not get replaced very quickly, so that typically when a person dies half of their heart cells had been there since birth! (That was something I had not realised. It is believed that this is related to how heart cells need to pulse in synchrony so that the whole organ functions as an effective pumping device – making long lasting cells that seldom need replacing more important than in many other tissues.)

At least, this relates to the cardiomyocytes – the cells that pulse when the heart beats (a pulse that can now be observed in single cells in vitro). Professor Harding described how in the heart tissue there are also other 'supporting' cells, such as "resident macrophages" (immune cells) as well as other cells moving around the cardiomyocytes. She describe her observations of the cells in Petri dishes,

"When you look at them in the dish it's incredible to see them interact. I've got a… video [of] cardiomyocytes in a dish. The cardiomyocytes pretty much just stay there and beat and don't do anything very much, and I had this on time lapse, and you could see cells moving around them. And so, in one case, the cell (I think it was a fibroblast, it looked like a fibroblast), it came and it palpated at the cardiomyocyte, and it nipped off bits of it, it sampled bits of the cardiomyocyte, and it just stroked it all the way round, and then it was, it seemed to like it a lot.

[In] another dish I had the same sort of cardiomyocyte, a very similar cell came in, it went up to the cardiomyocyte, it touched it, and as soon as it touched it, I can only describe it as it reared up and it had, little blobs appeared all over its surface, and it rushed off, literally rushed off, although it was time lapse so it was two minutes over 24 hours, so, it literally rushed off, so what had it found, why did one like it and the other one didn't?"

Making the unfamiliar, familiar

The snippets from the broadcast that I have reported above demonstrate a wide range of ways that the unfamiliar is made familiar by describing it in terms that a listener can relate to through their existing prior knowledge and experience. In these various examples the listener is left to carry across from the analogue features of the familiar (the city, the Lego bricks, human interactions, etc.) those that parallel features of the target concept – the cell. So, for example, the listener is assumed to appreciate that cells, unlike Lego bricks, are not built up through rigid, raised lumps that fit precisely in depressions on the next brick/cell. 2

Analogies with the familiar

Hooke's original label of the cell was based on a kind of analogy – an attempt to compare what we has seeing with something familiar: "pores, or cells…a great many little Boxes". He used the familiar simile of the honeycomb (something directly familiar to many more people in the seventeenth century when food was not subject to large-scale industrialised processing and packaging).

Other analogies, metaphors and similes abound. Cells are visually like "gloopy balloons", but functionally are "building blocks" (strictly a metaphor, albeit one that is used so often it has become treated as though a literal description) which can be conceptualised as being put together "like you would build a Lego kit" (a simile) although they are neither fixed, discrete blocks of a single material, nor organised by some external builder. They can be considered conceptually as the"smallest unit of life"(though philosophers argue about such descriptions and what counts as an individual in living systems).

The machine description ("fantastical living machines") reflects one metaphor very common in early modern science and cells as "incredible cities" is also a metaphor. Whether cells are literally machines is a matter of how we extend or limit our definition of machines: cells are certainly not actually cities, however, and calling them such is a way of drawing attention to the level of activity within each (often, apparently from observation, quite static) cell. B cells secrete antibodies, which the listener is old are like (a simile) harpoons or missiles – weapons.

Skeletons of the dead

Whether "the cell has its own skeleton" is a literal or metaphorical statement is arguable. It surely would have originally been a metaphoric description – there are structures in the cell which can be considered analogous to the skeleton of an organism. If such a metaphor is used widely enough, in time the term's scope expands to include its new use – and it becomes (what is called, metaphorically) a 'dead metaphor'.

Telling stories about cells

A narrative is used to help a listener imagine the cell at the scale of "a spacecraft". This is "organised into rooms and there are byways and channels" offering an analogy for the complex internal structure of a cell. Most people have never actually boarded a spacecraft, but they are ubiquitous in television and movie fiction, so a listener can certainly imagine what this might be like.


Endoplastic reticulum? (Still from Star Trek: The Motion Picture, Paramount Pictures, 1979)

Oversimplification?

The discussion of organelles illustrates how simplifications have to be made when introducing complex material. This always brings with it dangers of oversimplification that may impede further learning, or even encourage the development of alternative conceptions. So, the nucleus does not, strictly, 'store' "all the genetic information" in a cell (mitochondria carry their own genes for example).

More seriously, perhaps, mitochondria do not "make energy". 'More seriously' as the principle of conservation of energy is one of the most basic tenets of modern science and is considered a very strong candidate for a universal law. Children are often taught in school that energy cannot be created or destroyed. Science communication which is contrary to this basic curriculum science could confuse learners – or indeed members of the public seeking to understand debates about energy policy and sustainability.

Anthropomorphising cells

Cells are not only compared to inanimate entities like balloons, building bricks, cities and spaceships. They are also described in ways that make them seem like sentient agents – agents that have experiences, and conscious intentions, just as people do. So, some immune cells are metaphorical 'first responders' and just as emergency services workers they "rush to the site" of an incident. To rush is not just to move quickly, buy to deliberately do so. (By contrast, Paul McAuley refers to "innocent" amoeboid cells that collectively form into the plasmodium of a slime mould spending most of their lives"bumbling around by themselves" before they "get together". ) The immune cells act deliberately – they "try" to kill. Other immune cells "send out" metaphorical 'missiles' "to kill a pathogen". Again this language suggests deliberate action (i.e., to send out) and purpose.

That is, what is described is not just some evolved process, but something teleological: there is a purpose to sending out antibodies – it is a deliberate act with an aim in mind. This type of language is very common in biology – even referring to the 'function' of the heart or kidney or a reflex arc could be considered as misinterpreting the outcome of evolutionary developments. (The heart pumps blood through the vascular system, but referring to a function could suggest some sense of deliberate design.)

Not all cells are equal

I wonder how many readers noticed the reference above to 'supporting' cells in the heart. Professor Harding had said

"When you look inside the [heart] tissue there are many other cells [than cardiomyocytes] that are in there, supporting it, there are resident macrophages, I think we still don't know really what they are doing in there"

Why should some heart cells be seen as more important and others less so? Presumably because 'the function' of a heart is to beat, to pump, so clearly the cells that pulse are the stars, and the other cells that may be necessary but are not obviously pulsing just a supporting cast. (So, cardiomyocytes are considered heart cells, but macrophages in the same tissue are only cells that are found in the heart, "residents" – to use an analogy of my own, like migrants that have not been offered citizenship!)3

That is, there is a danger here that this way of thinking could bias research foci leading researchers to ignore something that may ultimately prove important. This is not fanciful, as it has happened before, in the case of the brain:

"Glial cells, consisting of microglia, astrocytes, and oligodendrocyte lineage cells as their major components, constitute a large fraction of the mammalian brain. Originally considered as purely non-functional glue for neurons, decades of research have highlighted the importance as well as further functions of glial cells."

Jäkel and Dimou, 2017
The lives of cells

Narrative is used again in relation to the immune cells: an infection is presented as a kind of emergency event which is addressed by special (human like) workers who protect the body by repelling or neutralising invaders. "Sniffing" is surely an anthropomorphic metaphor, as cells do not actually sniff (they may detect diffusing substances, but do not actively inhale them). Even "touching" is surely an anthropomorphism. When we say two objects are 'touching' we mean they are in contact, as we touch things by contact. But touching is sensing, not simply adjacency.

If that seems to be stretching my argument too far, to refer to immune cells "trying to find out…" is to use language suggesting an epistemic agent that can not only behave deliberately, but which is able to acquire knowledge. A cell can only "find" an infectious agent if it is (i.e., deliberately) looking for something. These metaphors are very effective in building up a narrative for the listener. Such a narrative adopts familiar 'schemata', recognisable patterns – the listener is aware of emergency workers speeding to the scene of an incident and trying to put out a fire or seeking to diagnose a medical issue. By fitting new information into a pattern that is familiar to the audience, technical and abstract ideas are not only made easier to understand, but more likely to be recalled later.

Again, an anthropomorphic narrative is used to describe interactions between heart cells. So, a fibroblast that "palpates at" a cardiomyocyte seems to be displaying deliberate behaviour: if "nipping" might be heard as some kind of automatic action – "sampling" and "stroking" surely seem to be deliberate behaviour. A cell that "came in, it went up [to another]" seems to be acting deliberately. "Rearing up" certainly brings to mind a sentient being, like a dog or a horse. Did the cell actually 'rear up'? It clearly gave that impression to Professor Harding – that was the best way, indeed the "only" way, she had to communicate what she saw.

Again we have cells "rushing" around. Or do we? The cell that had reared up, "rushed off". Actually, it appeared to "rush" when the highly magnified footage was played at 720 times the speed of the actual events. Despite acknowledging this extreme acceleration of the activity, the impression was so strong that Professor Harding felt justified in claiming the cell "literally rushed off, although it was time lapse so it was two minutes over 24 hours, so, it literally rushed off…". Whatever it did, that looked like rushing with the distortion of time-lapse viewing, it certainly did not literally rush anywhere.

But the narrative helps motivate a very interesting question, which is why the two superficially similar cells 'behaved' ('reacted', 'responded' – it is actually difficult to find completely neutral language) so differently when in contact with a cardiomyocyte. In more anthropomorphic terms: what had these cells "found, why did one like it and the other one didn't?"

Literally speaking?

Metaphorical language is ubiquitous as we have to build all our abstract ideas (and science has plenty of those) in terms of what we can experience and make sense of. This is an iterative process. We start with what is immediately available in experience, extend metaphorically to form new concepts, and in time, once those have "settled in" and "taken root" and "firmed up" (so to speak!) they can then be themselves borrowed as the foundation for new concepts. This is true both in how the individual learns (according to constructivism) and how humanity has developed culture and extended language.

So, should science communicators (whether scientists themselves, journalists or teachers) try to limit themselves to literal language?

Even if this were possible, it would put aside some of our strongest tools for 'making the unfamiliar familiar' (to broadcast audiences, to the public, to learners in formal education). However these devices also bring risks that the initial presentations (with their simplifications and metaphors and analogies and anthropomorphic narratives…) not only engage listeners but can also come to be understood as the scientific account. That is is not an imagined risk is shown by the vast numbers of learners who think atoms want to fill their shells with octets of electrons, and so act accordingly – and think this because they believe it is what they have been taught.

Does it matter if listeners think the simplification, the analogy, the metaphor, the humanising story,… is the scientific account? Perhaps usually not in the case of the audience listening to a radio show or watching a documentary out of interest.

In education it does matter, as often learners are often expected to progress beyond these introductory accounts in their thinking, and teachers' models and metaphors and stories are only meant as a starting point in building up a formal understanding. The teacher has to first establish some kind of anchor point in the students' existing understandings and experiences, but then mould this towards the target knowledge set out in the curriculum (which is often a simplified account of canonical knowledge) before the metaphor or image or story becomes firmed-up in the learners' minds as 'the' scientific account.

'Building the Body, Opening the Heart' was a good listen, and a very informative and entertaining episode that covered a lot of ideas. It certainly included some good comparisons that science teachers might borrow. But I think in a formal educational context a science teacher would need to be more circumspect in throwing some of these metaphors out there, without then doing some work to transition from them to more technical, literal, and canonical accounts.


Read about science analogies

Read about science metaphors

Read about science similes

Read about anthropomorphism

Read about teleology


Work cited:


Notes:

1 The right hand image portrays a mine, a weapon that is used at sea to damage and destroy (surface or submarine) boats. The mine is also triggered by contact ('touch').


2 That is, in an analogy there are positive and negative aspects: there are ways in which the analogue IS like the target, and ways in which the analogue is NOT like the target. Using an analogy in communication relies on the right features being mapped from the familiar analogue to the unfamiliar target being introduced. In teaching it is important to be explicit about this, or inappropriate transfers may be made: e.g., the atom is a tiny solar system so it is held together by gravity (Taber, 2013).


3 It may be a pure coincidence in relation to the choice of term 'resident' here, but in medicine 'residents' have not yet fully qualified as specialist physicians or surgeons, and so are on placement and/or under supervision, rather than having permanent status in a hospital faculty.


The missing mass of the electron

Annihilating mass in communicating science


Keith S. Taber


An episode of 'In Our Time' about the electron

The BBC radio programme 'In Our Time' today tackled the electron. As part of the exploration there was the introduction of the positron, and the notion of matter-antimatter annihilation. These are quite brave topics to introduce in a programme with a diverse general audience (last week Melvyn Bragg and his guests discussed Plato's Atlantis and next week the programme theme is the Knights Templar).

Prof. Victoria Martin of the School of Physics and Astronomy at the University of Edinburgh explained:

If we take a pair of matter and antimatter, so, since we are talking about the electron today, if we take an electron and the positron, and you put them together, they would annihilate.

And they would annihilate not into nothingness, because they both had mass, so they both had energy from E=mc2 that tells us if you have mass you have energy. So, they would annihilate into energy, but it would not just be any kind of energy: the particular kind of energy you get when you annihilate an electron and a positron is a photon, a particle of light. And it will have a very specific amount of energy. Its energy will be equal to the sum of the energy of electron and the positron that they had initially when they collided together.

Prof. Victoria Martin on 'In Our Time'

"An electron and the positron, and you put them together, they would annihilate…they would annihilate into energy" – but this could be misleading.

Now, I am sure that is somewhat different from how Prof. Martin would treat this topic with university physics students – of course, science in the media has to be pitched at the largely non-specialist audience.

Read about science in the media

It struck me that this presentation had the potential to reinforce a common alternative conception ('misconception') that mass is converted into energy in certain processes. Although I am aware now that this is an alternative conception, I seem to recall that is pretty much what I had once understood from things I had read and heard.

It was only when I came to prepare to teach the topic that I realised that I had a misunderstanding. That, I think, is quite common for teachers – when we have to prepare a topic well enough to explain it to others, we may spot flaws in our own understanding (Taber, 2009)

So, for example, I had thought that in nuclear processes, such as in a fission reactor or fusion in stars, the mass defect (the apparent loss of mass as the resulting nuclear fragments have less mass than those present before the process) was due to that amount of mass being converted to energy. This is sometimes said to explain why nuclear explosions are so much more violent than chemical explosions, as (given E=mc2): a tiny amount of mass can be changed into a great deal of energy.

Prof. Martin's explanation seemed to support this way of thinking: "they would annihilate into energy".


An alternative conception of particle annihilation: This scheme seems to be implied by Prof. Martin's comments

What is conserved?

It is sometimes suggested that, classically, mass and energy were considered to be separately conserved in processes, but since Einstein's theories of relativity have been adopted, now it is considered that mass can be considered as if a form of energy such that what is conserved is a kind of hybrid conglomerate. That is, energy is still considered conserved, but only when we account for mass that may have been inter-converted with energy. (Please note, this is not quite right – see below.)

So, according to this (mis)conception: in the case of an electron-positron annihilation, the mass of the two particles is converted to an equivalent energy – the mass of the electron and the mass of the positron disappear from the universe and an equivalent quantity of energy is created. Although energy is created, energy is still conserved if we allow for the mass that was converted into this new energy. Each time an electron and positron annihilate, their masses of about 2 ✕ 10-30 kg disappear from the universe and in its place something like 2 ✕ 10-13 J appears instead – but that's okay as we can consider 2 ✕ 10-30 kg as a potential form of energy worth 2 ✕ 10-13 J.

However, this is contrary to what Einstein (1917/2004) actually suggested.


Einstein did not suggest that matter could be changed to energy

Equivalence, not interconversion

What Einstein actually suggested was not that mass could be considered as if another kind/form of energy (alongside kinetic energy and gravitational potential, etc.) that needed to be taken into account in considering energy conservation, but rather that inertial mass can be considered as an (independent) measure of energy.

That is, we think energy is always conserved. And we think that mass is always conserved. And in a sense they are two measures of the same thing. We might see these two statements as having redundancy:

  • In a isolated system we will always have the same total quantity of energy before and after any process.
  • In a isolated system we will always have the same total quantity of mass before and after any process.

As mass is always associated with energy, and so vice versa, either of these statements implies the other. 1


Two conceptions of the shift from a Newtonian to a relativistic view of the conservation of energy (move the slider to change the image)

No interconversion?

So, mass cannot be changed into energy, nor vice versa. The sense in which we can 'interconvert' is that we can always calculate the energy equivalence of a certain mass (E=mc2) or mass equivalence of some quantity of energy (m=E/c2).

So, the 'interconversion' is more like a change of units than a change of entity.


Although we might think of kinetic energy being converted to potential energy reflects a natural process (something changes), we know that changing joules to electron-volts is merely use of a different unit (nothing changes).

If we think of a simple pendulum under ideal conditions 2 it could oscillate for ever, with the total energy unchanged, but with the kinetic energy being converted to potential energy – which is then converted back to kinetic energy – and so on, ad infinitum. The total energy would be fixed although the amount of kinetic energy and the amount of potential energy would be constantly changing. We could calculate the energy in joules or some other unit such as eV or ergs (or calories or kWh or…). We could convert from one unit to another, but this would not change anything about the physical system. (So, this is less like converting pounds to dollars, and more like converting an amount reported in pounds {e.g., £24.83} into an amount reported in pence {e.g., 2483p}.)

Using this analogy, the electron and positron being converted to a photon is somewhat like kinetic energy changing to potential energy in a swinging pendulum (something changes), but it is not the case that mass is changed into energy. Rather we can do our calculations in terms of energy or mass and will get (effectively, given E=mc2) the same answer (just as we can add up a shopping list in pounds or pence, and get the same outcome given the conversion factor, 1.00£ = 100p).

So, where does the mass go?

If mass is conserved, then where does the mass defect – the amount by which the sum of masses of daughter particles is less than the mass of the parent particle(s) – in nuclear processes go? And, more pertinent to the present example, what happens to the mass of the electron and positron when they mutually annihilate?

To understand this, it might help to bear in mind that in principle these process are like any other natural processes – such as the swinging pendulum, or a weight being lifted with pulley, or methane being combusted in a Bunsen burner, or heating water in a kettle, or photosynthesis, or a braking cycle coming to a halt with the aid of friction.

In any natural process (we currently believe)

  • the total mass of the universe is unchanged…
    • but mass may be reconfigured
  • the total energy of the universe is unchanged…
    • but energy may be reconfigured; and
  • as mass and energy are associated, any reconfigurations of mass and energy are directly correlated.

So, in any change that involves energy transfers, there is an associated mass transfer (albeit usually one too small to notice or easily measure). We can, for example, calculate the (tiny) increase in mass due to water being heated in a kettle – and know just as the energy involved in heating the water came from somewhere else, there is an equivalent (tiny) decrease of mass somewhere else in the wider system (perhaps due to falling of water powering a hydroelectric power station). If we are boiling water to make a cup of tea, we may well be talking about a change in mass of the order of only 0.000 000 001 g according to my calculations for another posting.

Read 'How much damage can eight neutrons do? Scientific literacy and desk accessories in science fiction.'

The annihilation of the electron and positron is no different: there may be reconfigurations in the arrangement of mass and energy in the universe, but mass (and so energy) is conserved.

So, the question is, if the electron and positron, both massive particles (in the physics sense, that they have some mass) are annihilated, then where does their mass go if it is conserved? The answer is reflected in Prof. Martin's statement that "the particular kind of energy you get when you annihilate an electron and a positron is a photon, a particle of light". The mass is carried away by the photon.

The mass of a massless particle?

This may seem odd to those who have learnt that, unlike the electron and positron, the photon is massless. Strictly the photon has no rest mass, whereas the electron and positron do have rest mass – that is, they have inertial mass even when judged by an observer at rest in relation to them.

So, the photon only has 'no mass' when it is observed to be stationary – which nicely brings us back to Einstein who noted that electromagnetic radiation such as light could never appear to be at rest compared to the observer, as its very nature as a progressive electromagnetic wave would cease if one could travel alongside it at the same velocity. This led Einstein to conclude that the speed of light in any given medium was invariant (always the same for any observer), leading to his theory of special relativity.

So, a photon (despite having no 'rest' mass) not only carries energy, but also the associated mass.

Although we might think in terms of two particles being converted to a certain amount of energy as Prof. Martin suggests, this is slightly distorted thinking: the particles are converted to a different particle which now 'has' the mass from both, and so will also 'have' the energy associated with that amount of mass.


Mass is conserved during the electron-positron annihilation

A slight complication is that the electron and position are in relative motion when they annihilate, so there is some kinetic energy involved as well as the energy associated with their rest masses. But this does not change the logic of the general scheme. Just as there is an energy associated with the particles' rest masses, there is a mass component associated with their kinetic energy.

The total mass-energy equivalence before the annihilation has to include both the particle rest masses and their kinetic energy. The mass-energy equivalence afterwards (being conserved in any process) also reflects this. The energy of the photon (and the frequency of the radiation) reflects both the particle masses and their kinetic energies at the moment of the annihilation. The mass (being perfectly correlated with energy) carried away by the photon also reflects both the particle masses and their kinetic energies.

How could 'In Our Time' have improved the presentation?

It is easy to be critical of people doing their best to simplify complex topics. Any teacher knows that well-planned explanations can fail to get across key ideas as one is always reliant on what the audience already understands and thinks. Learners interpret what they hear and read in terms of their current 'interpretive resources' and habits of thinking.

Read about constructivism

A physicist or physics student hearing the episode would likely interpret Prof. Martin's statement within a canonical conceptual framework. However, someone holding the 'misconception' that mass is converted to energy in nuclear processes would likely interpret "they would annihilate into energy" as fitting, and reinforcing, that alternative conception.

I think a key issue here is a slippage that apparently refers to energy being formed in the annihilation, rather than radiation: (i.e., Prof. Martin could have said "they would annihilate into [radiation]"). When the positron and electron 'become' a photon, matter is changed to radiation – but it is not changed to energy, as matter has mass, and (as mass and energy have an equivalence) the energy is already there in the system.


Energy is reconfigured, but is not formed, in the annihilation process.

So, this whole essay is simply suggesting that a change of one word – from energy to radiation – could potentially avoid the formation of, or the reinforcing of, the alternative conception that mass is changed into energy in processes studied in particle physics. As experienced science teachers will know, sometimes such small shifts can make a good deal of difference to how we are interpreted and, so, what comes to be understood.


Addenda:

Reply from Prof. Victoria Martin on twitter (@MamaPhysikerin), September 30:

"E2 = p2c2 + m2c4 is a better way to relate energy, mass and momentum. Works for both massive and massless states."

@MamaPhysikerin

Work cited:

Notes

1 In what is often called a closed system there is no mass entering or leaving the system. However, energy can transfer to, or from, the system from its surroundings. Classically it might be assumed that the mass of a closed system is constant as the amount of matter is fixed, but Einstein realised that if there is a net energy influx to, or outflow from, the system, than some mass would also be transferred – even though no matter enters or leaves.


2 Perhaps in a uniform gravitational field, not subject to to any frictional forces, with an inextensible string supporting the bob, and in thermal equilibrium with its environment.

Are these fossils dead, yet?

Non-living fossils and dead metaphors


Keith S. Taber


Fossil pottery?
(Images by by Laurent Arroues {background}) and OpenClipart-Vectors from Pixabay)


I was intrigued by some dialogue that was part of one of (physicist) Jim Al-Khalili's interviews for the BBC's 'The Life Scientific' series, where Prof. Al-Khalili "talks to leading scientists about their work, finding out what inspires and motivates them and asking what their discoveries might do for mankind".


The Life Scientific – interviews with scientists about their lives and work

This week he was talking to Dr Judith Bunbury of St. Edmund's College and the Department of Earth Sciences at Cambridge ('Judith Bunbury on the shifting River Nile in the time of the Pharaohs'). It was a fascinating interview, and in particular discussed work showing how the Nile River has repeatedly changed its course over thousands of years. The Nile is considered the longest river in Africa (and possibly the world – the other contender being the Amazon).


Over time the river shifts is position as it unevenly lay down sediment and erodes the river banks – (Image by Makalu from Pixabay)

The exchange that especially piqued my interest followed an account of the diverse material recovered in studies that sample the sediments formed by the river. As sediments are laid down over time, a core (collected by an auger) can be understood to have formed on a time-line – with the oldest material at the bottom of the sample.

Within the sediment, researchers find fragments of animal bone, human teeth, pottery, mineral shards from the working of jewels…


"Are you sure the Nile flows this far?" Using an auger to collect a core (of ice in this case) (Image by David Mark from Pixabay)

Dr Bunbury was taking about how changing fashions allowed the pottery fragments to be useful in dating material – or as the episode webpage glossed this: "pottery fragments which can be reliably time-stamped to the fashion-conscious consumers in the reign of individual Pharaohs".

This is my transcription of the exchange:

[JAK]: …a bit like fossil hunting
[JB]: well, I mean, we're just treating pottery as a kind of fossil
a kind of fossil, yeah, > no, absolutely >
< and it is a fossil <
yes, well quite, I can see the similarities.

Prof. Jim Al-Khalili interviewing Dr Judith Bunbury

Now Prof. Jim has a very gentle, conversational, interview style, as befits a programme with extended interviews with scientists talking about their lives (unlike, say, a journalist faced with a politician where a more adversarial style might be needed), so this exchange probably comes as close to a disagreement or challenge as 'The Life Scientific' gets. Taking a slight liberty, I might represent this as:

  • Al-Khalili: your work is like fossil hunting, the pottery fragments are similar to fossils
  • Bunbury: no, they ARE fossils

So, here we have an ontological question: are the pottery fragments recovered in archaeological digs (actually) fossils or not?

Bunbury wants to class the finds as fossils.

Al-Khalili thinks that in this context 'a kind of fossil' and 'like fossil hunting' are similes ("I can see the similarities") – the finds are somewhat like fossils, but are not fossils per se.

Read about science similes

So, who is right?

Metaphorical fossils

The term fossil is commonly used in metaphorical ways. For example, for a person to be described as a fossil is to be characterised as a kind of anachronism that has not kept up with social changes.

The term also seems to have been adopted in some areas of science as a kind of adjective. One place it is used is in relation to evidence of dampened ocean turbulence,

"The term 'fossil turbulence' refers to remnants of turbulence in fluid which is no longer turbulent."

Gibson, 1980, p.221

If that seems like a contradiction, it is explained that

"Small scale fluctuations of temperature, salinity, and vorticity in the ocean occur in isolated patches apparently caused by bursts of active turbulence. After the turbulence has been dampened by stable stratification the fluctuations persist as fossil turbulence."

Gibson, 1980, p.221

So, 'fossil turbulence' is not actually turbulence, but more the afterglow of the turbulence: a bit like the aftermath of a lively party which leaves its traces: the the chaotic pattern of abandoned debris provides signs there has been a party although there is clearly no longer a party going on.


An analogy for 'fossil turbulence'

Another example from astronomy is fossil groups of galaxies, which are apparently "systems with a very luminous X-ray source …and a very optically dominant central galaxy" (Kanagusuku, Díaz-Giménez & Zandivarez, 2016). It seems,

"The true nature of fossil groups in the Universe still puzzles the astronomical community. These peculiar systems are one of the most intriguing places in the Universe where giant elliptical galaxies are hosted [sic]."

Kanagusuku, Díaz-Giménez & Zandivarez, 2016

('Hosted' here also seems metaphorical – who or what could be acting as a host to an elliptical galaxy?)

The term 'fossil group' was introduced for "for an apparently isolated elliptical galaxy surrounded by an X-ray halo, with an X-ray luminosity typical of a group of galaxies" (Zarattini, Biviano, Aguerri, Girardi & D'Onghia, 2012): so, something that looks like a single galaxy, but in other respsects resembles a whole group of galaxies?

Close examination might reveal other galaxies present, yet the 'fossil' group is "distinguished by a large gap between the brightest galaxy and the fainter members" (Dariush, Khosroshahi, Ponman, Pearce, Raychaudhury & Hartley, 2007). Of course, there is normally a 'large gap' between any two galaxies (space contains a lot of, well, space), but presumably this is another metaphor – there is a 'gap' between the magnitude of the luminosity of the brightest galaxy, and the magnitudes of the luminosities of the others.

Read about science metaphors

Dead metaphors

One way in which language changes over time is through the (metaphorical) death of metaphors. Terms that are initially introduced as metaphors sometimes get generally adopted and over time become accepted terminology.

Many words in current use today were originally coined in this way, and often people are quite unaware of their origins. References to the hands of a clock or watch will these days be taken as simply a technical term (or perhaps for those who only familiar with digital clocks, a complete mystery?) In time, this may happen to 'fossil turbulence' or 'fossil galaxy groups'.

What counts as a fossil?

But it seems reasonable to suggest that, currently at least, these are still metaphors, implying that in some sense the ocean fluctuations or the galactic groups are somewhat like fossils. But these are not actual fossils, just as tin-pot dictators are not actually fabricated from tin.

So, what are actual fossils. The 'classic' fossil takes the form of an ancient, often extinct, living organism, or a part thereof, but composed of rock which has over time replaced the original organic material. In this sense, Prof. Al-Khalili seems correct in suggesting bits of pottery are only akin to fossils, and not actually fossils. But is that how the experts use the term?

According to the British Geological Survey (BGS):

Fossils are the preserved remains of plants and animals whose bodies were buried in sediments, such as sand and mud, under ancient seas, lakes and rivers. Fossils also include any preserved trace of life that is typically more than 10 000 years old. 

https://www.bgs.ac.uk/discovering-geology/fossils-and-geological-time/fossils/ 1

Now, pottery is not the preserved remains of plants or animals or other living organisms, but the site goes on to explain,

Preserved evidence of the body parts of ancient animals, plants and other life forms are called 'body fossils'. 'Trace fossils' are the evidence left by organisms in sediment, such as footprints, burrows and plant roots.

https://www.bgs.ac.uk/discovering-geology/fossils-and-geological-time/fossils 1

So, footprints, burrows, [evidence of] plant roots 2…or shards of pottery…can be trace fossils? After all, unearthed pottery is indirect evidence of living human creatures having been present in the environment, and, as the BGS also points out "the word fossil is derived from the Latin fossilis meaning 'unearthed'."

However, if the term originally simply meant something unearthed, then although the bits of pot would count as fossils – based on that argument so would potatoes growing in farmers' fields. So, clearly the English word 'fossil' has a more specific meaning in common use than its Latin ancestor.

But going by the BGS definition, Dr Bunbury's unearthed samples of pottery are certainly evidence of organisms left in sediment, so might be considered fossils. These fossils are not the remains of dead organisms, but neither is 'fossil' here simply a metaphor (not even a dead metaphor).


Work cited:
  • Dariush, A, Khosroshahi, H. G., Ponman, T. J., Pearce, F., Raychaudhury, S. & Hartley, W. (2007), The mass assembly of fossil groups of galaxies in the Millennium simulation, Monthly Notices of the Royal Astronomical Society, Volume 382, Issue 1, 21 November 2007, Pages 433-442, https://doi.org/10.1111/j.1365-2966.2007.12385.x
  • Gibson, Carl H. (1980) Fossil Temperature, Salinity, and Vorticity Turbulence in the Ocean. In Jacques C.J. Nihoul (Ed.) Marine Turbulence, Elsevier, pp. 221-257.
  • Kanagusuku, María José, Díaz-Giménez, Eugenia & Zandivarez, Ariel (2016) Fossil groups in the Millennium simulation – From the brightest to the faintest galaxies during the past 8 Gyr, Astronomy & Astrophysics, 586 (2016) A40, https://doi.org/10.1051/0004-6361/201527269.
  • Romero, I. C., Nuñez Otaño, N. B., Gibson, M. E., Spears, T. M., Fairchild, C. J., Tarlton, L., . . . O'Keefe, J. M. K. (2021). First Record of Fungal Diversity in the Tropical and Warm-Temperate Middle Miocene Climate Optimum Forests of Eurasia [Original Research]. Frontiers in Forests and Global Change, 4. https://doi.org/10.3389/ffgc.2021.768405
  • Zarattini, S., Biviano, A., Aguerri, J. A. L., Girardi, M. & D'Onghia, E. (2012) Fossil group origins – XI. The dependence of galaxy orbits on the magnitude gap, Astronomy & Astrophysics, 655 (2021) A103, DOI: https://doi.org/10.1051/0004-6361/202038722.

Notes:

1 "Fossils are the preserved remains of plants and animals whose bodies …". But this suggests that fungi do not form fossils. The same site points out that "We tend to think of fungi, such as mushrooms and toadstools, as being plants — but they are not. They neither grow from embryos nor photosynthesise and are put in a separate kingdom" (https://www.bgs.ac.uk/discovering-geology/fossils-and-geological-time/plants-2/) – yet does not seem to mention any examples of fungi that have been fossilised (so the comment could be read to be meant to suggest that fossil fungi are found as well as fossil plants; but could equally well be read to mean that as fungi are not plants they do not fossilise).

The second quote here is more inclusive: "Preserved evidence of the body parts of ancient animals, plants and other life forms…" The site does also specify that "Remains can include microscopically small fossils, such as single-celled foraminifera…" (https://www.bgs.ac.uk/discovering-geology/fossils-and-geological-time/fossils/).

So, just to be clear, fossil fungi have been found.




Fungal spores found in Thailand – figure 3 from Romero et al, 2021. These fossils were recovered form lignite (a form of coal) deposited in the Miocene epoch.
Copyright © 2021 Romero, Nuñez Otaño, Gibson, Spears, Fairchild, Tarlton, Jones, Belkin, Warny, Pound and O'Keefe; distributed under the terms of the Creative Commons Attribution License (CC BY).

2 If the roots were themselves fossilised then these would surely be body fossils as roots are parts of plant. Presumably this is meant to refer to the channels in soil when the roots grow through the soil.



Is the Big Bang Theory mistaken?

Not science fiction, but fictional science


Keith S. Taber


we are made of particles that have existed since the moment the universe began…those atoms travelled 14 billion years through time and space

The Big Bang Theory (but not quite the big bang theory).

What is the Big Bang Theory?

The big bang theory is a theory about the origin and evolution of the universe. Being a theory, it is conjectural, but it is the theory that is largely taken by scientists as our current best available account.

According to big bang theory, the entire universe started in a singularity, a state of infinite density and temperature, in which time space were created as well as matter. As the universe expanded it cooled to its present state – some, about, 13.8 billion years later.


Our current best understanding of the Cosmos is that the entire Universe was formed in a 'big bang'
(Image by Gerd Altmann from Pixabay)

The term 'big bang' was originally intended as a kind of mockery – a sarcastic description of the notion – but the term was adopted by scientists, and has indeed become widely used in general culture.

Which brings me to 'The Big Bang Theory', which is said to have been the longest ever running sitcom ('situation comedy') – having been in production for longer than even 'Friends'.


The Big Bang Theory: Not science fiction, but fictional science? (Five of these characters have PhDs in science: one 'only' has a master's degree in engineering.)

A situation comedy is set around a situation. The situation was that two Cal Tech physicists are sharing an apartment. Leonard (basically a nice guy, but not very successful with women) is flatmate to Sheldon, a synaesthete, and kind of savant (a device on which to lever much of the humour) – a genius with an encyclopaedic knowledge of most areas of science but a deficient 'theory of mind' such that he lacks

  • insight into others, and so also
  • empathy, and
  • the ability to tell when people are using humour or being sarcastic to him.

If most physicists were like Sheldon we could understand why the big bang theory is still called the big bang theory even though the term was intended to be facetious. The show writers claim that Sheldon was not deliberately written to be on the autistic spectrum, but he tends to take statements literally: when it is suggested that he is crazy, he responds that he knows he is not as his mother had him tested as a child.


Sheldon (at right, partially in shot) has been widely recognised by viewers as showing signs of high-functioning Autism or Aspergers syndrome. (Still from The Big Bang Theory)

These guys hang out with Raj (Rajesh), an astrophysicist and Cambridge graduate so shy he is unable to speak to women, or indeed in their presence (presumably not a problem inherited from his father who is is a successful gynaecologist in India), and an engineer, Howard, who to my viewing is just an obnoxious creep with no obvious redeeming qualities. (But then I've not seen the full run.) When Howard becomes a NASA astronaut, he is bullied by the other astronauts, and whilst bullying is never acceptable, it is difficult to be too judgemental in his case.

This group are scientists, and they are 'nerds'. They watch science fiction and superhero movies, buy comic books and action figures, play competitive board games and acquire all the latests technical gadgets. And, apart from Sheldon (who has a strong belief in following a principled rigorous regime of personal hygiene that makes close contact with other humans seem repulsive) they try, and largely fail, to attract women.

In case this does not seem sufficiently stereotypical, the situation is complete when a young woman moves into in the flat opposite Leonard and Sheldon: Penny is the 'hot' new neighbour, who comes across as a 'dumb blonde' (she wants to be an actress – she is actually a waitress whilst she works at that), something of a hedonist, and not having the slightest knowledge of, or interest in, science. Penny's plan in life is to become a movie star, and her back-up plan is to become a television star.

If Sheldon and his friends tend to rather fetishise science and see it as inherently superior to other ways of engaging in the world, then Penny seems to reflect the other side of 'the two cultures' of C. P. Snow's famous lecture/essay that described an arts-science divide in mid-twentieth century British public life. That is, not only an acknowledged ignorance of scientific matters, but an ignorance that is almost worn as a badge of honour. Penny, of course, actually has a good deal of knowledge about many areas of culture that our 'heroes' are ignorant of.

Initially, Penny is the only lead female character in the show. This creates considerable ambiguity in how we are expected to see the show's representations of scientists during the early series. Is the viewer meant to be sharing their world where women are objects of recreation and sport and a distraction from the important business of the scientific quest? Or, is the audience being asked to laugh at these supposedly highly intelligent men who actually have such limited horizons?

Sheldon: I am a physicist. I have a working knowledge of the entire universe and everything it contains.

Penny. Who's Radiohead?

[pause]

Sheldon: I have a working knowledge of important things in the universe.


Penny has no interest in science

So, the premise is: can the nerdy, asthmatic, short-sighted, physicist win over the pretty, fun-loving, girl-next-door who is clearly seen to be 'out of his league'.

Spoiler alert

Do not read on if you wish to watch the show and find out for yourself.  😉

A marriage made in the heavens?

I recently saw an episode in series n (where n is a large positive integer) where Leonard and Penny decided to go to Las Vagas and get married. Leonard said he had written his own marriage vows – and it was these that struck me as problematic. My complaint was nothing to do with love and commitment, but just about physics.


Cal Tech physicist Leonard Hofstadter (played by Johnny Galecki) wrote his own vows for marriage to Penny (Kaley Cuoco) in 'The Big Bang Theory'

A non-physical love?

I made a note of Leonard's line:

"Penny, we are made of particles that have existed since the moment the universe began. I like to think those atoms travelled 14 billion years through time and space to create us so that we could be together and make each other whole."

Leonard declares his love

Sweet. But wrong.

Perhaps Leonard had been confused by the series theme music, the 'History of Everything', by the band Barenaked Ladies. The song begins well enough:

"Our whole universe was in a hot dense state

Then nearly fourteen billion years ago, expansion started…"

Lyrics to History of Everything (The Big Bang Theory Theme)

but in the second verse we are told

"As every galaxy was formed in less time than it takes to sing this song.

A fraction of a second and the elements were made."

Lyrics to History of Everything (The Big Bang Theory Theme)

which seems to reflect a couple of serious alternative conceptions.

So, the theme song seems to suggest that once the big bang had occurred, "nearly fourteen billion years ago", the elements were formed in a matter of seconds, and the galaxies in a matter of minutes. Leonard goes further, and suggests the atoms that he and Penny are comprised of have existed since "the moment the universe began". This is all contrary to the best understanding of physicists.

Surely Leonard, who defended his PhD thesis on particle physics, would know more about the canonical theories about the formation of those particles? (If not, he could ask Raj who once applied for a position in stellar evolution.)

The "hot dense state" was so hot that no particles could have condensed out. Certainly, some particles began to appear very soon after the big bang, but for much of the early 'history of everything' the only atoms that could exist were of the elements hydrogen, helium and lithium – as only the nuclei of these atoms were formed in the early universe.

The formation of heavier elements – carbon, oxygen, silicon and all the rest – occurred in stars – stars that did not exist until considerable cooling from the hot dense state had occurred. (See for example, 'A hundred percent conclusive science. Estimation and certainty in Maisie's galaxy'.) Most of the matter comprising Leonard, Penny, and the rest of us, does not reflect the few elements formed in the immediate aftermath of the big bang, but heavier elements that were formed billions of years later in stars that went supernovae and ejected material into space. 1 As has often been noted, we are formed from stardust.

"…So don't forget the human trial,
The cry of love, the spark of life, dance thru the fire

Stardust we are
Close to divine
Stardust we are
See how we shine"

From the lyrics to 'Stardust we are' (The Flower Kings – written by Roine Stolt and Tomas Bodin)

Does it matter – it is only pretend

Of course The Big Bang Theory (unlike the big bang theory) is not conjecture, but fiction. So, does it matter if it gets the science wrong? The Big Bang Theory is not meant to be science fiction, but a fiction that uses science to anchor it into a situation that will allow viewers to suspend disbelief.

Leonard is a believable character, but Sheldon is an extreme outlier. Howard and Raj are caricatures, exaggerations, as indeed are Amy (neurobiologist) and Bernadette (microbiologist) the other core characters introduced later.

But the series creators and writers seem to have made a real effort at most points in the show to make the science background authentic. Dialogue, whiteboard contents, projects, laboratory settings and the like seem to have been constructed with great care so that the scientifically literate viewer is comfortable with the context of the show. This authentic professional context offers the credible framework within which the sometimes incredible events of the characters' lives and relationships do not seem immediately ridiculous.

In that context, Leonard getting something so wrong seems incongruent.

Then again, he is in love, so perhaps his vows are meant to tell the scientifically literate viewer that there is a greater truth than even science – that in matters of the heart, poetic truth trumps even physics?

A Marillion song tells us:

A wise man once wrote
That love is only
An ancient instinct
For reproduction
Natural selection
A wise man once said
That everything could be explained
And it's all in the brain

Lyrics from 'This is the 21st Century' (Hogarth)

But as the same song asks: "where is the wisdom in that?"


Source cited:
  • Snow, C. P. (1959/1998). The Rede Lecture, 1959: The two cultures. In The Two Cultures (pp. 1-51). Cambridge University Press.

Note:

1 I was tempted to write 'most of the atoms'. Certainly most of the mass of a person is made up of atoms 2 that were formed a long time after the big bang. However, in terms of numbers of atoms, there are more of the (lightest) hydrogen atoms than of any other element: we are about 70% water, and water comprises molecules of H2O. So, that is getting close to half the atoms in us before we consider all the hydrogen in the fats and proteins and so forth.


2 That, of course, assumes the particles we are made of are atoms. Actually, we are comprised chemically of molecules and ions and relatively very, very few free atoms (those that are there are accidentally there in the sense they are not functional). No discrete atoms exist within molecules. So, to talk of the hydrogen atoms in us is to abstract the atoms from molecules and ions.

Leonard confuses matters (and matter) by referring initially to particles (which could be nucleons, quarks?) but then equating these to atoms – even though atoms are unlikely to float around for nearly 14 billion years without interacting with radiation and other matter to get ionised, form molecules, that may then dissociate, etc.

For many people reading this, I am making a pedantic point. When we talk of the atoms in a person's body, we do not actually mean atoms per se, but component parts of molecules of compounds of the element indicated by the atom referred to*. A water molecule does not contain two hydrogen atoms and an oxygen atom, but it does contain two hydrogen atomic nuclei, and the core of an oxygen atom (its nucleus, and inner electron 'shell') within an 'envelope' of electrons.

* So, it is easier to use the shorthand: 'two atoms of hydrogen and one of oxygen'.

The reason it is sometimes important to be pedantic is that learners often think of a molecule as just a number of atoms stuck together and not as a new unitary entity composed of the same set of collective components but in a new configuration that gives it different properties. (For example, learners sometimes think the electrons in a covalent bond are still 'owned' by different atoms.) There is an associated common alternative conception here: the assumption of initial atomicity, where students tend to think of chemical processes as being interactions between atoms, even though reacting substances are very, very rarely atomic in nature.

Read about the assumption of initial atomicity

Fingerprinting an exoplanet

Life, death, and multiple Gaias


Keith S. Taber


NASA might be said to be engaged in looking for other Gaias beyond our Gaia, as Dr Milam explained to another Gaia.

This post is somewhat poignant as something I heard on a radio podcast reminded me how science has recently lost one of its great characters, as well as an example of that most rare thing in today's science – the independent scientist.


Inside Science episode "Deep Space and the Deep Sea – 40 years of the International Whaling Moratorium", presented, perhaps especially aptly, by Gaia Vince

I was listening to the BBC's Inside Science pod-cast episode 'Deep Space and the Deep Sea – 40 years of the International Whaling Moratorium' where the presenter – somewhat ironically, in view of the connection I was making, Gaia Vince – was talking to Dr Stefanie Milam of Nasa's Goddard Space Flight Centre about how the recently launched James Webb Space Telescope could help scientists look for signs of life on other planets.


From: https://jwst.nasa.gov/content/meetTheTeam/people/milam.html

Dr Milam explained that

"spectra…give us all the information that we really need to understand a given environment. And that's one of the amazing parts about the James Webb space telescope. So, what we have access to with the wavelengths that the James Webb space telescope actually operates at, is that we have the fingerprint pattern of given molecules, things like water, carbon monoxide, carbon dioxide, all these things that we find in our own atmosphere, and so by using the infrared wavelengths we can look for these key ingredients in atmospheres around other planets or even, actually, objects in our own solar system, and that tells us a little bit about what is going on as far as the dynamics of that planet, whether or not its has got geological activity, or maybe even something as crazy as biology."

Dr Stefanie Milam, interviewed for 'Inside Science'
"Webb has captured the first clear evidence of carbon dioxide (CO2) in the atmosphere of a planet outside of our solar system!" (Hot Gas Giant Exoplanet WASP-39 b Transit Light Curve, NIRSpec Bright Object Time-Series Spectroscopy.)
Image: NASA, ESA, CSA, and L. Hustak (STScI). Released under 2.0 Generic (CC BY 2.0) License – Some rights reserved by James Webb Space Telescope
Do molecules have fingerprints

Fingerprints have long been used in forensic work to identify criminals (and sometimes their victims) because our fingerprints are pretty unique. Even 'identical' twins do not have identical fingerprints (thought I suspect that fact rather undermines some crime fiction plots). But, to have fingerprints one surely has to have fingers. A palm print requires a palm, and a footprint, a foot. So, can molecules, not known for their manual dexterity, have fingerprints?

Well, it is not exactly by coincidence (as the James Webb space telescope has had a lot of media attention) that I very recently posted here, in the context of new observations of the early Universe, that

"Spectroscopic analysis allows us to compare the pattern of redshifted spectral lines due to the presence of elements absorbing or emitting radiation, with the position of those lines as they are found without any shift. Each element has its own pattern of lines – providing a metaphorical fingerprint.

from: A hundred percent conclusive science. Estimation and certainty in Maisie's galaxy

In chemistry, elements and compounds have unique patterns of energy transitions which can be identified through spectroscopy. So, we have 'metaphorical fingerprints'. To describe a spectrum as a chemical substance's (or entity's, such as an ion's) fingerprint is to use a metaphor. It is not actually a fingerprint – there are no fingers to leave prints – but this figure of speech gets across an idea though an implicit comparison with something already familiar. *1 That is, it is a way of making the unfamiliar familiar (which might be seen as a description of teaching!)

Dead metaphors

But perhaps this has become a 'dead metaphor' so that now chemicals do have fingerprints? One of the main ways that language develops is by words changing their meanings over time as metaphors become so commonly used they case to be metaphorical.

For example, I understand the term electrical charge is a dead metaphor. When electrical charge was first being explored and was still unfamiliar, the term 'charge' was adopted by comparison with the charging of a canon or the charge of shot used in a shotgun. The shot charge refers to the weight of shot included in a cartridge. Today, most people would not know that, whilst being very familiar with the idea of electrical charge. But when the term electrical charge was first used most people knew about charging guns.

So, initially, electrical 'charge' was a metaphor to refer to the amount of 'electricity' – which made use of a familiar comparison. Now it is a dead metaphor, and 'electrical charge' is now considered a technical tern in its own right.

Another example might be electron spin: electrons do not spin in the familiar sense, but really do (now) have spin as the term has been extended to apply to quanticles with inherent angular momentum by analogy with more familiar macroscopic objects that have angular momentum when they are physically rotating. So, we might say that when the term was first used, it was a metaphor, but no longer. (That is, physicists have expanded the range of convenience of the term spin.)

Perhaps, similarly, fingerprint is now so commonly used to mean a unique identifier in a wide range of contexts, that it should no longer be considered a metaphor. I am not sure if that is so, yet, but perhaps it will be in, say, a century's time – and the term will be broadly used without people even noticing that many things have acquired fingerprints without having fingers. (A spectrum will then actually be a chemical substance's or entity's fingerprint.) After all, many words we now commonly use contain fossils of their origins without us noticing. That is, metaphorical fossils, of course. *2

James Lovelock, R.I.P.

The reason I found this news item somewhat poignant was that I was listening to it just a matter of weeks after the death (at age 103) of the scientist Jim Lovelock. *3 Lovelock invented the device which was able to demonstrate the ubiquity of chlorofluorocarbons (CFCs) in the atmosphere. These substances were very commonly used as refrigerants and aerosol propellants as they were very stable, and being un-reactive (so non-toxic) were considered safe.

But this very stability allowed them to remain in and spread through the atmosphere for a very long time until they were broken down in the stratosphere by ultraviolet radiation to give radicals that reacted with the ozone that is so protective of living organisms. Free radical reactions can occur as chain reactions as when a radical interacts with a molecule it leads to a new molecule, plus a new radical which can often take part in a further interaction with another molecule: so, each CFC molecule could lead to the destruction of many ozone molecules. CFCs have now been banned for most purposes to protect the ozone 'layer', and so us.

Life is chemistry out of balance

But another of Lovelock's achievements came when working for NASA to develop means to search for life elsewhere in the universe. As part of the Mariner missions, NASA wanted Lovelock to design apparatus that could be sent to other worlds and search for life (and I think he did help do that), but Lovelock pointed out that one could tell if a planet had life by a spectroscopic analysis.

Any alien species analysing light passing through earth's atmosphere would see its composition was far from chemical equilibrium due to the ongoing activity of its biota. (If life were to cease on earth today, the oxygen content of the atmosphere would very quickly fall from 21% to virtually none at all as oxygen reacts with rocks and other materials.) If the composition of an atmosphere seemed to be in chemical equilibrium, then it was unlikely there was life. However, if there were high concentrations of gases that should react together or with the surface, then something, likely life, must be actively maintaining that combination of gases in the atmosphere.

"Living systems maintain themselves in a state of relatively low entropy at the expense of their nonliving environments. We may assume that this general property is common to all life in the solar system. On this assumption, evidence of a large chemical free energy gradient between surface matter and the atmosphere in contact with it is evidence of life. Furthermore, any planetary biota which interacts with its atmosphere will drive that atmosphere to a state of disequilibrium which, if recognized, would also constitute direct evidence of life, provided the extent of the disequilibrium is significantly greater than abiological processes would permit. It is shown that the existence of life on Earth can be inferred from knowledge of the major and trace components of the atmosphere, even in the absence of any knowledge of the nature or extent of the dominant life forms. Knowledge of the composition of the Martian atmosphere may similarly reveal the presence of life there."

Dian R. Hitchcock and James E. Lovelock – from Lovelock's website (originally published in Icarus: International Journal of the Solar System in 1967)

The story was that NASA did not really want to be told they did not need to send missions with spacecraft to other words such as Mars to look for life, rather that they only had to point a telescope and analyse the spectrum of radiation. Ironically, perhaps, then, that is exactly what they are now doing with planets around other star systems where it is not feasible (not now, perhaps not ever) to send missions.

Gaia and Gaia

But Lovelock became best known for his development and championing of the Gaia theory. According to Gaia (the theory, not the journalist), the development of life on earth has shaped the environment (and not just exploited pre-existing niches) and developed as a huge integrated and interacting system (the biota, but also the seas, the atmosphere, freshwater, the soil,…) such that large scale changes in one part of the system have knock-on effect elsewhere. *4

So, Gaia can be understood not as the whole earth as a planet, or just the biota as the collective life in terms of organisms, but rather as the dynamic system of life of earth and the environment it interacts with. In a sense (and it is important to see this is meant as an analogy, a thinking tool) Gaia is like some supra-organism. Just as snail has a shell that it has produced for its self, Gaia has shaped the biosphere where the biota lives. *4

The system has built in feedback cycles to protect it from perturbations (not by chance, or due to some mysterious power, but due to natural selection) but if it is subject to a large enough input it would shift to a new (and perhaps very different) equilibrium state. *5 This certainly happened when oxygen releasing organisms evolved: the earth today is inhospitable to the organisms that lived here before that event (some survived to leave descendants, but only in places away from the high oxygen concentrations, such as in lower lays of mud beneath the sea), and most organisms alive today would die very quickly in the previous conditions.

It would be nice to think that Gaia, the science journalist that is, was named after the Gaia theory – but Lovelock only started publishing about his Gaia hypothesis about the time that Gaia was born.*6 So, probably not. Gaia is a traditional girl's name, and was the name of the Greek goddess who personified the earth (which is why the name was adopted by Lovelock).

Still, it was poignant to hear a NASA scientist referring to the current value of a method first pointed out by Lovelock when advising NASA in the 1970s and informed by his early thinking about the Gaia hypothesis. NASA might be said to now be engaged in looking for other Gaias on worlds outside our own solar system, as Dr Milam explained to – another – Gaia here on earth.


Notes:

*1 It is an implicit comparison, because the listener/reader is left to appreciate that it is meant as a figure of speech: unlike in a simile ('a spectrum is like a fingerprint') where the comparison is made explicit .


*2 For some years I had a pager (common before mobile phones) – a small electronic device which could receive a text message, so that my wife could contact me in an emergency if I was out visiting schools by phoning a message to be conveyed by a radio signal. If I had been asked why it was called a pager, I would have assumed that each message of text was considered to comprise a 'page'.

However, a few weeks ago I watched an old 'screwball comedy' being shown on television: 'My favourite wife' (or 'My favorite [sic] wife' in US release).

(On the very day that Cary Grant remarries after having his first wife, long missing after being lost at sea, declared legally dead, wife number one reappears having been rescued from a desert island. That this is a very unlikely scenario was played upon when the film was remade in colour, as 'Move Over Darling', with Doris Day and James Garner. The returned first wife, pretending to be a nurse, asks the new wife if she is not afraid the original wife would reappear, as happened in that movie; eliciting the response: 'Movies. When do movies ever reflect real life?')

Some of the action takes place in the honeymoon hotel where groom has disappeared from the suite (these are wealthy people!) having been tracked down by his first wife. The new wife asks the hotel to page him – and this is how that worked with pre-electronic technology:

Paging Mr Arden: Still from 'My Favorite Wife'

*3 So, although I knew Lovelock had died (July 26th), he was still alive at the time of the original broadcast (July 14th). In part, my tardiness comes from the publicly funded BBC's decisions to no longer make available downloads of some of its programmes for iPods and similar devices immediately after broadcast. (This downgrading of the BBC's service to the public seems to be to persuade people to use its own streaming service.)


*4 The Gaia theory developed by Lovelock and Lyn Margulis includes ideas that were discussed by Vladimir Vernadsky almost a century ago. Although Vernadsky's work was well known in scientific circles in the Soviet Union, it did not become known to scientists in Western Europe till much later. Vernadsky used the term 'biosphere' to refer to those 'layers' of the earth (lower atmosphere to outer crust) where life existed.


*5 A perturbation such as as extensive deforestation perhaps, or certainly increasing the atmospheric concentrations of 'greenhouse' gases beyond a certain point.


*6 Described as a hypothesis originally, it has been extensibility developed and would seem to now qualify as a theory (a "consistent, comprehensive, coherent and extensively evidenced explanation of aspects of the natural world") today.