Converting glucose and oxygen into energy

Keith S. Taber

Amy was a participant in the Understanding Science Project. Amy was a Y10 (14-15 year old) student who had separate lessons in biology, chemistry and physics. When I spoke to her, she told me that in biology she was studying respiration which she suggested was "converting glucose and oxygen into energy…through anaerobic respiration and aerobic respiration". This involved "converting glucose into energy, glucose and oxygen into energy and either carbon dioxide and lactic acid, or just carbon dioxide. Something like that".

In physics lessons she had been studying the topic of electricity, and she recognised that energy was an idea which appeared in both topics:

The work in physics on electricity and the work in biology on respiration, is there any connection there?

Well, in respiration energy is produced, and in physics energy is stored in a battery or a power supply and that then travels round – the circuit.

When I spoke to her again, some weeks later, Amy repeated that respiration was "converting oxygen and glucose into energy and carbon dioxide". She told me that this was important "because it produces energy which like in humans your body needs, well in anything, your body needs and to grow and move and things like that". She also told me that trees were "living and they need to produce energy and when they photosynthesise they produce like energy anyway" but that she obtained energy "through food which is then broken down and converted into energy".

It is a basic principle in science, that energy cannot be created or destroyed. (Since Einstein, is has become clear that strictly matter can be considered as if a form of energy, and interconversion can take place, for example in nuclear processes, but this effect is negligible in normal chemical systems.) What Amy took away from her biology classes, though, was that energy could be produced in respiration and photosynthesis, and that indeed glucose and energy were converted into energy in respiration (i.e., an alternative conception). Amy did not seem to be applying the principle of energy conservation here – although it transpired (see here) that she had recently studied this in her physics lessons.

Author: Keith

Former school and college science teacher, teacher educator, research supervisor, and research methods lecturer. Emeritus Professor of Science Education at the University of Cambridge.

Leave a Reply

Your email address will not be published. Required fields are marked *

Discover more from Science-Education-Research

Subscribe now to keep reading and get access to the full archive.

Continue reading