Some molten iron would evaporate but not all of it, 'cause it's not like water and it's more heavy
Keith S. Taber
Sophia was a participant in the Understanding Science Project. In her first interview near the start of Y7, Sophia told me that she had learnt "about the particles…all the things that make – the actual thing, make them a solid, and make them a gas and make them a liquid" (i.e. the states of matter). All solids had particles, including (as examples) ice and an iron clamp stand. There would be the same particles in the ice as the iron.
"because they are a solid, but they can change , 'cause if erm they melted they would be a liquid so they would have different particles in…Well they are still the same particles but they are just changing the way they act".
Sophia's suggestion that particles in ice and the iron were the same types of particles as both were solid seems to be 'carving nature' at the wrong joints – that is in this model the particles in ice and (solid) iron would be of one type, whilst those of water and liquid iron would be of another type (that is she had an alternative ontology). Sophia quickly corrected this, so it is not clear if this reflected some intuitive idea or was just 'a slip of tongue'.
According to Sophia the ice could be melted "with something that's hot, like a candle" but for the iron "you need more heat, 'cause it's more, it's a lot more stronger…because it's got more particles pushed together".
Strictly the difference is more about the strength of the interactions between particles, than how many were pushed together – although strong bonding forces would tend (all other factors being equal) to lead to particles being bound more tightly and being closer. We might argue here that Sophia seemed to confuse cause and effect – that a higher density of particles was an effect of strong bonding, which would also mean more energy was needed to overcome that bonding. (However, we should also be aware that when students use 'because' (which formally implies causality) they sometimes mean little more than 'is associated with'.)
If the water obtained from melting ice was heated more "it will evaporate into the sky". However, if the molten iron was heated Sophia thought that "some of it would evaporate but not all of it, 'cause it's not like water and it's more heavy". She thought only "a little" of the iron would evaporate to give iron vapour:
"No, I think that water all of it goes, but other material, other liquids some of it will go, not all of it". The rest "if it's cold enough, it will go back into a solid, but if not it really just stays as a liquid".
Sophia's idea that no matter how much liquid iron was heated it would not completely evaporate so some would remain liquid, which seemed to be linked in her mind to its density, seems to be evidence of an alternative conception. Students may not expect that something as (apparently) inherently solid as iron could evaporate (everyday experience may act as a grounded learning impediment), and so may not readily accept that the basic model of the states of matter and changes of state (i.e., a heated liquid will evaporate or boil) can apply to something like iron. Sophia seemed to have formed a hybrid conception – applying the taught model, but with a modification reflecting the counter-intuitive notion that iron could become a vapour.
Conceptual change can be a slow progress, although hybrid conceptions may be 'stepping stones' towards more scientific understandings. However, when I spoke to Sophia in Y8 she did not seem to have progressed further. [See 'Liquid iron stays a liquid when heated'.]