How is a well-planned curriculum like a protein?

Because it has different levels of structure providing functionality

Keith S. Taber

I have been working on a book about pedagogy, and was writing something about sequencing teaching. I was setting out how well-planned teaching has a structure that has several levels of complexity – and I thought a useful analogy here (as the book is primarily aimed at chemistry educators) might be protein structure.

Proteins can have very complex structures. (Image by WikimediaImages from Pixabay )

Proteins are usually considered to have at least three, or often four, levels of structure. Protein structure is not just of intellectual interest, but has critical functional importance. It is the shape, conformation, of the protein molecule which allows it to have its function. Now, I should be careful here, as I am well aware (and have discussed on the site) how the language we often use when discussing organisms can seem teleological.

Read about teleology

We analyse biological structures and processes, and when considering the component parts can see them as having some function in relation to that overall structure or process. That can give the impression of purpose – as though someone designed the shape of the protein with a particular function in mind. That can give the impression of teleological thinking – seeing nature as having a purpose. The scientific understanding is that proteins with their complex shapes that are just right for their observed functions have been subject to natural selection over a very long period – evolving along with the structures and processes they are part of.

The importance of protein shape

The shape of a protein can allow it to act as a catalyst that will allow, say, a polysaccharide to break down into simple sugars at body temperature and at a rate that can support an organism's metabolism (when the rate without the enzyme would only give negligible amounts of product ). The shape of a protein, as in haemoglobin, may allow a complex to exist which either binds with oxygen or releases it depending on the local conditions in different parts of the body. And so forth.

Now, chemically, proteins are of the form of polyamides – substances that can be understood to have a molecular structure of connected amide units (above left, source: Wikipedia) in a long chain that results from polymerising amino acid units (amino acid structure shown above right, source: Wikipedia). An amino acid molecule has two functional groups – an amide group (-NH2) which allows the compounds to react with carboxylic acids (including amino acids for example), and a carboxylic acid group (-COOH) that allows the compound to react with amides (including amino acids for example). So, amino acids can polymerise as each amino acid molecule has two sites that can be loci for the reaction.

Molecular structure of a compound formed by four amino acids – the peptide linkage (highlighted orange) is formed from part (-CO-) of the acid group (-COOH, as outlined in red) of one amino acid molecule with part (-NH-) of the amine group (-NH2, as outlined in cyan) of another amino acid molecule (which may be of the same or a different amino acid). In proteins the chains are much longer. Original image from Wikipedia

Special examples of polyamides

So, proteins are polyamides. But this does not mean that polyamides are proteins. In the same way that chemistry Nobel prize winners are scientists – but not all scientists are Nobel laureates. So, being a polyamide is a necessary, but not a sufficient, condition for being a protein. For examples, nylons are also polyamides, but are not proteins. 1

Proteins tend to be very complex polyamides, which are built up from a number of different amino acids (of which 20 are found in proteins). Each amino acid has a different molecular structure – there is the common feature which allows the peptide linkages to form, but each amino acid also has a different side chain or 'residue' as part of its molecule. But just being a large, complex, polypeptide built from a selection of those 20 amino acids does not necessarily lead to a protein found in livings things. The key point about the protein is that its very specific shape allows it to have the function it does. Indeed there are many billions of polyamide structures of similar complexity to naturally found proteins which could exist (and perhaps do somewhere), but which have no role in living organisms (on this planet at least!)

A simple teaching analogy often used to explain enzyme specificity is that of a lock and key. Whilst somewhat simplistic, if we consider that the protein has to have just the right shape to 'fit' the 'substrate' molecule then it is clear that the precise shape is important. A key that opens a door lock has to be precisely shaped. (The situation with an enzyme is actually more demanding, as the molecule can change its shape according to whether a substrate is bound – so it needs to be the right shape to bind to the substrate molecular and then the right shape to release the product molecule.)

So a functioning protein molecule has a very specific shape, indeed sometimes a specific profile of shapes as it interacts with other molecules, and this can be understood to arise from several levels of structure.

Four levels of structure

The primary structure is the sequence of amino acid residues along the polypeptide skeleton.

The amino acid sequence in polypeptide chains in human insulin (with the amino acids represented by conventional three letter abbreviations) – image from Saylor Academy, 2012 open access text: The Basics of General, Organic, and Biological Chemistry

The chain is not simply linear, or a zigzag shape (as we might commonly represent an organic molecules based on a chain of carbon atoms). Rather the interactions between the peptide units, causes the chain to form a more complex three-dimensional structure, such as a helix. This is the secondary structure.

Protein chains tend to form into shapes such as helices (This example: Crystal structure of the DNA-binding protein Sso10a from Sulfolobus solfataricus; from the protein data base PDB DOI: 10.2210/pdb4AYA/pdb.)

Because the secondary structure allows the amino acid residues on different parts of the chain to be close, interactions, forms of bonding, form between different points on the chain. (As shown in the representation of the insulin structure above.) This depends on the amino acid sequence as the different residues have different sizes, shapes and functional groups – so interactions will occur between particular residue pairs. This adds another level of structure.

A coiled cable can take on various overall shapes (Image by Brett Hondow from Pixabay )

Imagine taking a coiled cable somewhat like the helical secondary structure), such as used for some headphone, and folding this into a more complex shape. This is the tertiary structure, and gives the protein its unique shape, which it turn makes it suitable to act as an enzyme or hormone or whatever.

Proteins may be even more complex, as they may comprise complexes of several chains, closely bound together by weak chemical bonds. Haemoglobin, for example, has four such subunits arranged in a quaternary structure.

A representation of the structure of a haemoglobin protein – with the four interlinked chains shown in different colours (Structure determination of haemoglobin from Donkey (equus asinus) at 3.0 Angstrom resolution, from the protein data base: PDB DOI: 10.2210/pdb1S0H/pdb)

But what has this got to do with sequencing curriculum?

When planning teaching, such as when developing a course or writing a 'scheme of work', one has to consider how to sequence the introduction of course material as well as learning activities. This can be understood to have different levels in terms of the considerations we might take into account.

A well-designed curriculum sequence has several levels of structure (ordering, building, cross-linking) affording more effective teaching

Primary structure and conceptual analysis

A fundamental question (once we have decided what falls within the scope of the course, and selected the subject matter) is how to order the introduction of topics and concepts. There is usually some flexibility here, but as some concepts are best understood in terms of other more fundamental ideas, there are more and less logical ways to go about this. 'Conceptual analysis' is the technique which is used to break down the conceptual structure of material to see what prerequisite learning is necessary before discussing new material.

For example, if we wish to teach for understanding then it probably does not make sense to introduce double bonds before the concept of covalent bonds, or neutralisation before teaching something about acids, or d-level splitting before introducing ideas about atomic orbitals, or the rate determining step of a reaction before teaching about reaction rate. In biology, it would not make sense to teach about mitochondria before the concept of cells had been introduced. In physics, one would not seek to teach about conservation of momentum, before having introduced the concept of momentum. The reader can probably think of many more examples. The sequence of quanta of subject matter in the curriculum sequence can be considered a first level of curriculum structure.

Secondary structure and the spiral curriculum

We also revise topics periodically at different levels of treatment. We introduce topics at an introductory level – and later offer more sophisticated accounts (atomic structure, acidity, oxidation…). We distinguish metals form non-metals and later introduce electronegativity. We distinguish ionic and covalent bonds and later introduce degrees of bond polarity. In recent years this has been reflected in the work on developing model 'learning progressions' that support students in more sophisticated scientific thinking over several grade levels.

From Taber, 2021

This builds upon the well-established idea of a 'spiral curriculum' (Bruner, 1960) where the learner resists topics in increasing levels of sophistication over their student career. So, here is a level of structure beyond the linear progression of topics covered in different sessions, encompassing revisiting the same topic at different turns of the 'spiral' (perhaps like the alpha helices formed in may proteins).

This already suggests there will be linkages across the 'chain' of teachings units (whether seen as lectures/lesson or lesson episodes) as references are made back to earlier teaching in order to draw upon more fundamental ideas in building up more complex ideas, and building on simplified accounts to develop more nuanced and sophisticated accounts.

Tertiary structure – drip feeding to reinforce learning

The skilled teacher will also be making other links that are not strictly* essential but are useful unless the students have exemplary study skills usually ARE essential!]

To support students in consolidating learning (something that is usually essential if we want them to remember the material and be able to apply it months later) the teacher will 'drip feed' reinforcement of prior learning by looking for opportunities to revise key points form earlier teaching.

We have defined what we mean by 'compound' or 'oxidising agent' or 'polymer', so now we spot opportunities to reinforce this whenever it seems sensible to do so in teaching other material. We have taught students to calculate molecular mass, or assign oxidation states, or recognise a Lewis acid – so we look for opportunities to ask students to rehearse and apply this knowledge in contexts that arise in later teaching. At the end of a previous lesson everyone seemed to understand the difference between respiration and breathing – but it sensible to find opportunity for them to rehearse the distinction. 2

There is then a level of structure due to linkages back and forth between the components of the teaching sequence.

So where the 'primary structure' is necessary to build up knowledge in a logical way in order that the teaching scheme functions to provide a coherent learning experience (teaching makes sense at the time), and the secondary structure allows progression toward more sophisticated accounts and models as students develop, the 'tertiary structure' offers reinforcement of learning to ensure the course functions as an effective long term learning experience (that what was taught is not just understood at the time, but is retained, and readily brought to mind in relevant contexts, and can be applied, over the longer term).

Quaternary structure – locating the course in the wider curriculum experience

What about quaternary structure? Well, commonly a student is not just attending one class or lecture course. Their curriculum consists of several different strands of teaching experiences. At upper secondary school level, for example, the learner may attend chemistry classes interspersed with physics classes, biology classes and mathematics classes. Their experience of the curriculum encompasses these different strands. Likely, there are both salient and other less obvious potential linkages between these different courses. Conservation of energy from physics applies in chemistry and biology. Enzymes are catalysts, so the characteristics of catalysts apply to them. The nature of hydrogen bonds may be taught in chemistry – and applied in biology. In that case, it would be useful for the learners if the topic was taught that concept in the chemistry class before it was needed in biology.

And just as there may be aspects of logical sequencing of ideas across the strands to be considered, there may be other potential links where the teacher in one subject can draw upon, exemplify, or provide opportunities to review, what has been taught in the other.

Level of structureFeature of sequencing
primary structurelogical sequencing of concepts to identify and later build on prerequisites
secondary structurespiral curriculum to build up sophistication of understanding
tertiary structurecross-linking between lessons along strand to reinforce learning by finding opportunities to revisit, review, and apply prior learning
quaternary structurecross links between courses to build up integrated (inter-*)disciplinary knowledge
levels of structure in well-designed curriculum

(* in a degree course this may be coordinating different lecture courses within a discipline; in a school context this may be relating different curriculum subjects)

Afterword

How seriously do I intend this comparison? Of course this is just an analogy. It is easy to see that it does not hold up to detailed analysis – there are more ways that curricular structure is quite unlike protein structure, and the kinds of units and links being discussed in the two cases are of very different nature.

Is there any value in such a comparison if the analogy is somewhat shallow? Well, devices such as analogies operate as thinking tools. Most commonly we use teaching analogies to help 'make the unfamiliar familiar' by showing how something unfamiliar is somewhat like something familiar. This can be a useful first stage in helping someone understand some new phenomena or concept.

In teaching science we commonly make analogies with everyday phenomena to help introduce abstract science concepts. Here I am using a scientific concept (protein structure) as the analogue for the target idea about sequencing teaching.

Read about scientific analogies

My motivation here was to prompt teachers (and others who might read the book when it is finished) who are already familiar with general ideas about curriculum and schemes of work to think about a parallel (albeit, perhaps a somewhat forced one?) with something rather different but likely already very familiar – protein structure. Chemists and science teachers are likely to already appreciate the different levels of structure in proteins, and how the different aspects of the nature of polypeptide chains and the links formed between amino acid residues inform the overall shape, and therefore the functionality, of the structure.

Perhaps this thinking tool will entice readers to think about how conceptual links within and between courses of study can support the functionality of teaching? Perhaps they will dismiss the comparison, pointing out various ways in which the level of structure in a well-planned curriculum are quite different from the levels of structure in a protein. Of course, if they can do that insightfully, I might suspect that this 'teaching analogy' will have done its job.

Work cited:
Note:

1 Sometimes the term polyamide is reserved for synthetic compounds and contrasted with polypeptides as natural products.

2 This can be useful even when students 'seem' to have grasped key ideas. When they remember that 'everything is made of atoms' we may not appreciate they think that implies chemical bonds contain atoms. When they seem to have understood that cellular metabolism depends upon respiration, we may not appreciate they think that this does not apply to plants when the sun is shining.

Not me, I'm just an ugly chemist

Keith S. Taber

Actress Francesca Tu playing an 'ugly chemist', apparently.

The 1969 film 'The Chairman' (apparently released in the UK as 'The Most Dangerous Man in the World') was just shown on the TV. I had not seen it before, but when I noticed it was on I vaguely recalled having heard something about it suggesting it was a film worth watching, so thought I would give it a try. And it had "that nice Gregory Peck" in it, which I seem to recall was the justification given for one of my late wife's sweet little Aunties going to see 'The Omen' (wasn't that also about the The Most Dangerous Man in the World?).

Nobel prize winner AND man of action

Dr John Hathaway (played by Gregory Peck): scientist and international man of mystery

Peck plays a Nobel laureate chemist, so I got interested. He had received a letter from a Chinese scientist, an old mentor who had worked with him at Princeton, warning him not to go to visit him in China, which (a) piqued his interest as (i) he had had no contact with the colleague for a decade, and (ii) he had no plans to go to China, and (b) told us viewers he would be off to China.

Peck's character, Hathaway, is an American who is currently a visiting professor at the University of in London. He contacts his embassy, suspecting there must be something of international significance in the message.

Hathaway's love interest (played by Anne Heywood) is seen teaching in the biophysics department

It transpires that this Nobel prize winning chemist had some kind of background in "the game" – intelligence work (of course! Well, at least this gets away from the stuffy stereotype of the scientist who never leaves the lab.), but had reached an epiphany three years earlier when his wife had been killed in a road accident while he was driving, and the experience of being with her as she died had led to him deciding that every life was unique and precious (as he later explained to Mao Zedong, the eponymous Chairman of the title) and he would no longer take on a job that would oblige him to kill. (Later in the film Hathaway seemed to have forgotten his high principles when he accepted a pistol as he made an escape in a stolen armoured car.) The intelligence communities had become aware that China had identified a natural product that could be extracted in tiny quantities, an enzyme which allowed any crop to be grown under any conditions.

The film seemed to be intended to make some serious points about detente, the cold war, the cultural revolution and the cult of Mao, and political and moral imperatives.

It is the responsibility of all to cultivate themselves, and study Marxism-Leninism deeply. / [Thinks: Sure, as soon as we've finished cultivating this rice.]
The allies argue that China will keep the new discovery to itself and use it to bring developing countries with food shortages into its sphere of influence, and Hathaway seems motivated to ensure all of humanity should share the benefits, thus he accepts the mission to go to China; later Mao agrees to provide a written promise that if Hathaway helps in the research then he can leave China at any time he likes and take with him whatever information he wishes to share with the world.

For the rest of the film to make any sense, Hathaway and the viewer have to assume that the promise and document will not be honoured (and it seems to be assumed that a character simply suggesting this is all Hathaway, or indeed any of us, need to be convinced of this). Yet, (SPOILER ALERT) when Hathaway is safely back in London, and has decoded the structure, he is told that the Western authorities have decided not to share the discovery.

I was not sure what a young audience who do not remember the context might make of some aspects of the film. We are told that the operation to obtain the enzyme, operation Minotaur *, has according to the US officer in charge cost half a billion federal dollars (which seems a lot for 1969, even allowing for some exaggeration) and was supported by the UK with a contribution a British intelligent officer suggests was likely "two pounds ten" (i.e., £2.50).

I wondered whether Chinese agents actually operated so easily in moving into and out of Hong Kong as is suggested, and there was some interesting brief news footage  playing on a hotel television suggesting (British) Hong Kong police were responding to civil unrest in a way that does not seem so different from contemporary reports under the already notorious 2020 Hong Kong national security law.

Anyway, I will try and avoid too many plot spoilers, but suffice to say I was interested and intrigued in how matters would pan out for the first three quarters of the film (until people started firing guns and throwing grenades, at which point I lost any investment I'd had in what would happen.)

Science in the media in 1969

The science in the film was far-fetched, but perhaps not too far fetched for a general audience in 1969. 1969 was after all, a different age. (In 1969 the Beatles were still together, 'In the Court of the Crimson King' was released, and NASA's landing on the moon showed just what the USA could achieve when a President believed in, and encouraged, and resourced, the work of scientists and engineers.)

A transmitter made of undetectable plastic parts, suppposedly

Hathaway was bugged (through a sinus implant) such that his US /UK handlers (and USSR observer) could hear everything he said and everything said to him from half a world away through a bespoke satellite that the Chinese had not noticed recently appearing over their territory. The Americans initially had serious trouble with signal:noise and just made out the odd consonant, and so could not understand any speech, but a UK intelligence officer suggested simply filling in the gaps with uniform white noise, which, amazingly, and (even more amazingly) immediately at first attempt, gave a much cleaner sound than I can get on FaceTime or Zoom or Skype today (Implied message: the British may be the poor relatives, but have the best ideas?)

High stakes communication

What Hathaway did not know (but perhaps he should have been paying more attention when he was told the implanted transmitter was a 'remedy' in case the Chinese would not let him leave the country?) was that the implanted transmitter also had an explosive device that could be used if he needed to be terminated.

Indeed there was supposedly enough plastic explosive that when Hathaway was invited to meet Chairman Mao (was he meant to be 'the most dangerous man in the world'?) it raised the issue of whether the device should be used to remove the Chairman as he played table tennis with Hathaway (asking us to believe that democratic governments might sanction the violent summary execution of perceived enemies, without due legal process, in foreign lands) *.

Is it stretching credibility to believe that democratic governments would sanction the violent summary execution of perceived enemies, without due legal process, on foreign soil?

The command code to explode the device was stored on magnetic tape that took over thirty seconds to execute the instructions (something that seems ridiculous even for 1969, and was presumably only necessary to provide faux tension at the point where the clock counts down and the audience are supposed to wonder if the British and Americans are going to have to kill the film's star off before the movie is over).

Equally ridiculous, the implant supposedly had the same density as human tissue so that it would not show up on  X-rays. (A wise precaution: when in  Hong Kong, Hathaway is lured to some kind of decadent, Western, casino-cum-brothel where Chinese agents manage to covertly X-ray him from the next room as he enjoys a bowl of plain rice with a Chinese intelligence officer – quite a technical feat).

Of course, human tissue is not all of one 'density' (in the sense of opaqueness to X-rays), or else there would be little point in using X-rays in medical diagnosis – actually a sinus should show up on an X-ray as an empty cavity!

Would blocked sinuses show on an X-ray?

Highly technical information appeared on screens at the listening post as displays little more complex than sine waves – not even the Lissajous figures so popular with 1970s sci-fi programmes.

I think it's just the carrier wave, sir

At one point Hathaway broke into a room through a thick solid metal floor by using just a few millilitres of nitrohydrochloride acid (aqua regia) that was apparently a standard bench reagent in the Chinese biochemistry laboratory (these enzymes must be pretty robust, or perhaps Professor Soong had a side project that involved dissolving gold), and which Hathaway was quite happy to carry with him in a small glass bottle in his jacket pocket. The RSC's Education in Chemistry magazine warns us that "because its components are so volatile, [aqua regia] is usually only mixed immediately prior to use". Risk assessment has come on a lot since Dr Hathaway earned his Nobel.

Laboratory safety glasses: check. Bench mat: check. Gloves: check. Lab coat: check. Fume cupboard: check.

The focal enzyme was initially handled rather well – the molecular models looked convincing enough, and the technical problem of scaling up by synthesising it seemed realistic. The Chinese scientist could not produce the enzyme in quantity and hoped Hathaway could help with the synthesis – a comparison was made with how producing insulin originally involved the sacrifice of many animals to produce modest amounts, but now could be readily made at scale. I seem to recall from my natural products chemistry that before synthetic routes were available, sex hormones were obtained by collecting vast amounts of 'material' from slaughterhouses and painstakingly abstracting tiny quantities – think the Curies, but working with with tonnes of gonads rather than tonnes of pitchblende.

Before Hathaway had set out on his mission he had pointed out that the complexity of an enzyme molecule was such that he could never memorise the molecular structure as it would contain anything from 3000 to 400 000 atoms. So, the plot rather fell apart at the end (SPOILER ALERT) as he brings back a copy of Mao's little red book, in which his mentor had hidden the vital information – as the codes for three amino acids.

Ser – Tyr – Pro

Hm.

Beauty and the chemist

You are beautiful, just like your mother – but OBVIOUSLY not as clever as your dad.

But, what sparked me to wrote something about this film, was some dialogue which brought home to me just how long ago 1969 was (I was still in short trousers – well, to be honest, for about half the year I am still in short trousers, but then it was all year round). Hathaway is flown to China from Hong Kong, and on arrival is met by the daughter of his old mentor:

Soong Chu (Francesca Tu): I am Professor Soong's daughter

Dr. John Hathaway (Peck): You look a great deal like your beautiful mother.

Soong Chu: Not I. I am just an ugly chemist

Hathaway: I read your recent paper on peptides. I thought it was brilliant – for a woman.

Soong Chu: Oh, I agree, but my father helped a great deal.

Working in the dark to avoid any more comments on her looks?

I was taken aback by the reference to just being an ugly chemist, and had to go back and check that I'd heard that correctly. Was the implication that one could not be beautiful, and a chemist? Nothing more was said on the topic, but that seemed to be the implication. And what is meant by being 'just' a chemist?

Hathaway's comment that Soong Chu's paper had been brilliant, was followed by a pause. Then came "…for a woman". Did he really say that?

Not bad for a girl

I was waiting for the follow-up comment which would resolve this moment of tension. This surely had to be some kind of set up for a punch line: "It would have been beyond brilliant for a man", perhaps.

But no, Soong Chu just agreed. There did not seem to be intended to be any tension or controversy or social critique or irony or satire there. So much for Soong Chu's membership of the Red Guard and all the waving of the thoughts of the Chairman (she would have known that "Women represent a great productive force in China, and equality among the sexes is one of the goals of communism").

"The red armband is the most treasured prize in China…[representing] responsibility…[as] a leader of our revolution"
Soong Chu had needed the help of her father to prepare her paper, but he had presumably declined to be a co-author, not because his input did not amount to a substantial intellectual contribution (the ethics of authorship have also come on a bit since then), but because his daughter was a woman and so not able to stand on her own two feet as a scientist.

This dialogue is not followed up later in the film.

So, this is not planting a seed for something that will later turn out to be of significance for character development or plot, or that will be challenged by subsequent scenes. It is not later revealed that Soong Chu has a parallel career as Miss People's Republic of China (just as Hathaway is a chemist and also a kind of James Bond figure). Nor does it transpire that Professor Soong had been senile for many years and all of his work was actually being undertaken for him by his even more brilliant daughter.

Sadly, no, it just seems to be the kind of polite conversation that the screenwriters assumed would be entirely acceptable to an audience that was presumably well aware that females cannot be both beautiful and scientists; and that women need help from men if they are to be successful in science.

Times have changed … I hope.

 

 

* Interestingly, I've now found a poster for the film which seems to suggest that the whole purpose of the operation was not to acquire the enzyme structure at all, but to get Hathaway close enough to Mao to assassinate him.

Getting viewers to watch the film under false pretences

This seems to describe a very different cut to one I watched – where the audience with Mao seems to have surprised everyone, and the senior intelligence officers contacted their governments to alert them of this unexpected opportunity!