Covalent bonding is sharing electrons

It's covalent bonding where the electrons are shared to create a full outer shell

Keith S. Taber

Brian was a participant in the Understanding Chemical Bonding project. He was interviewed during the first year of his college 'A level' course (equivalent to Y12 of the English school system). Brian was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonly used in chemistry teaching. He was shown a simple representation of a covalent molecule:

Focal figure ('2') presented to Brian

Any idea what that's meant to be, number 2?

Hydrogen molecule.

Why, how do you recognise that as being a hydrogen molecule?

Because there's two atoms with one electron in each shell.

Uh hm. Er, what, what's going on here, in this region here, where these lines seem to meet?

Bonding.

That's bonding. So there's some sort of bonding there is there?

Yeah.

Can you tell me anything about that bonding?

It's covalent bonding.

So, so what's covalent bonding, then?

The electrons are shared to create a full outer shell.

Okay, so that's an example of covalent bonding, so can you tell me how many bonds there are there?

One.

There's one covalent bond?

Yeah.

Right, what exactly is a covalent bond?

It's where electrons are shared, almost, roughly equally, between the two atoms.

So that's what we'd call a covalent bond?

Yeah.

So according to Brian, covalent bonding is where "the electrons are shared to create a full outer shell". The idea that a covalent bond is the sharing of electrons to allow atoms to obtain full electron shells is a very common way of discussing covalent bonding, drawing upon the full shells explanatory principle, where a 'need' for completing electron shells is seen as the impetus for bonding, reactions, ion formation etc. This principle is the basis of a common alternative conceptual framework, the octet rule framework.

For some students, such ideas are the extent of their ways of discussing bonding phenomena. However, despite Brian defining the covalent bond in this way, continued questioning revealed that he was able to think about the bond in terms of physical interactions

Okay. And why do they, why do these two atoms stay stuck together like that? Why don't they just pull apart?

Because of the bond.

So how does the bond do that?

(Pause, c.13s)

Is it by electrostatic forces?

Is it – so how do you think that works then?

I'm not sure.

The long pause suggests that Brian did not have a ready formed response for such a question. It seems here that 'electrostatic forces' is little more than a guess, if perhaps an informed guess because charges and forces had features in chemistry. A pause of about 13 seconds is quite a lacuna in a conversation. In a classroom context teachers are advised to give students thinking time rather than expecting (or accepting) immediate responses. Yet, in many classrooms, 13 seconds of 'dead air' (to borrow a phrase from broadcasting) from the teacher night be taken as an invitation to retune attention to another station.

Even in an interview situation the interviewer's instinct may be to move on to a another question, but in situations where a researcher is confident that waiting is not stressful to the participant, it is sometimes productive to give thinking time.

Another issue relating to interviewing is the use of 'leading questions'. Teachers as interviewers sometimes slip between researcher and teacher roles, and may be tempted to teach rather than explore thinking.

Yet, the very act of interviewing is an intervention in the learners' thinking, in that whatever an interviewer tells us is in the context of the conversation set up by the interviewer, and the participant may have ideas they would not have done without that particular context. In any case, learning is not generally a once off event, as school learning relies on physiological process long after the initial teaching event to consolidate learning, and this is supported by 'revision'. Each time a memory is reactivated it is strengthened (and potentially changed).

So the research interview is a learning experience no matter how careful the researcher is. Therefore the idea of leading questions is much more nuanced that a binary distinction between those questions which are leading and those that are not. So rather than completely avoiding leading questions, the researcher should (a) use open-ended questions initially to best understand the ideas the learner most easily beings to mind; (b) be aware of the degree of 'scaffolding' that Socratic questioning can contribute to the construction of a learners' answer. [Read about the idea of scaffolding learning here.] The interview continued:

Can you see anything there that would give rise to electrostatic forces?

The electrons.

Right so the electrons, they're charged are they?

Yeah. Negatively.

Negatively charged – anything else?

(Pause, c.8s)

The protons in the nucleus are positively charged.

Uh hm. And so would that give rise to any electronic interactions?

Yeah.

So where would there be, sort of any kind of, any kind of force involved here is there?

By the bond.

So where would there be force, can you show me where there would be force?

By the, in the bond, down here.

So the force is localised in there, is it?

The erm, protons would be repelling each other, they'd be attracted by the electrons, so they're keep them at a set distance.

It seemed that Brian could discuss the bond as due to electrical interactions, although his initial ('instinctive') response was to explain the bond in terms of electrons shared to fill electron shells. Although the researcher channelled Brian to think about the potential source of any electrical interactions, this was only after Brian had himself conjectured the role of 'electrostatic forces.'

Often students learn to 'explain' bonds as electron sharing in school science (although arguably this is a rather limited form of explanation), and this becomes a habitual way of talking and thinking by the time they progress to college level study.

In a molecule, the electron actually slots into spaces

Keith S. Taber

Mohammed was a participant in the Understanding Science Project. When interviewed in the first term of his upper secondary (GCSE) science course (in Y10), he told me he had been learning about ionic bonding in one of his science classes. Mohammed had quite a clear idea about ionic bonding, which he described in terms of the interactions of two atoms where "they both want to get full outer shells", leading to salt which was "like two atoms joined together":

The "two atoms joined together" sounds much like a molecule (and it is very common for students to identify molecule like ion-pairs even in representations of extensive ionic lattices), so I asked Mohammed about this:

Can I see these atoms?

No. They're really small. Because the wavelength of visible light is actually too like large to see the atoms, they just pass over them.

Okay, so I can't see them. But I can imagine them, can I?

Yeah.

So if I could imagine a sodium atom and chlorine atom, and then they form salt, what would it look like afterwards? How could I imagine it afterwards.

Oh it's like two atoms joined together.

That sounds like a molecule to me?

It's not actually, like, joined.

No?

Because I know that whenever things of opposite charge, I know two rods, when they come together, they don't actually touch, so they don't exactly touch, but they are very close, two atoms close to each other

So a molecule would be different to that in some way, would it?

Yeah, a molecule's actually bonded

So how that different?

I think in a molecule, the electron actually slots into spaces.

I see, and it doesn't do that in this case?

No.

So Mohammed thinks that the interaction between the ions will be due to their electrical charges, but, for him, this may not count as a bond, as the forces just hold the ions ("atoms") close together, and do not actually join them. Mohammed's idea of the atoms not actually touching, "they don't actually touch, so they don't exactly touch", is transferring a notion from the familiar world of macroscopic phenomena (where things touch, or they do not touch) to the submicroscopic world of quanticles that do not have definitive size/volume, and do not actually have distinct surfaces, so touching is a matter of degree. There is no more (or less) 'touching' in a covalent bond than in ionic bonding. So according to Mohammed the ions do not form a molecule, as in a molecule there would some kind of more direct joining – he suggests something like an interlocking with electrons from one atom slotting into spaces on another.

Interestingly, Mohammed bases his notion that the ions would not touch on a general principle that he considers to apply whenever considering things of opposite charge – which he justifies on his knowledge that "two [charged] rods, when they come together, they don't actually touch". He may be misremembering something here – or he may have seen a demonstration of suspended charged rods of the same material (so either both negatively or both positively changed) that when one is moved closer to the other the rods repel. Whatever the source, Mohammed seems to feel he has a valid general principle that he can apply here that act as a grounded learning impediment channelling his thinking about the case under discussion along 'the wrong lines'.

Mohammed's notion of the ionic bonding as being just due to forces rather than being a proper bond is very similar to a common alternative conceptions of ionic bonding which sees ions in a lattice only having a limited number of ionic bonds depending upon valency (the valency conjecture) but bonded with other coordination counter-ions by 'just forces' (the just forces conjecture) – although here Mohammed suspected that all ionic bonding fell short of being proper chemical bonds.

This is a very mechanical model of the covalent bond, whereas the scientific model presents bonding as more of a process than a material mechanical link. However teaching models often present bonding this way, and sometimes molecules are modelled in terms of jigsaws with atoms or radicals as pieces to be slotted together. Although such models are only meant to provide a simple analogy for the bonding they may act as learning impediments if learners take them too 'literally' as realistic representations and transfer inappropriate associations from the model to their understanding of the system being modelled.

Mohammed also uses similar language when asked about salt dissolving in water, as the charge of the water forces the sodium and chlorine ions to slot into certain places within the water molecules *.

Molecules are like a jigsaw

Keith S. Taber

Tim was a participant in the Understanding Science Project. When Tim was interviewed in the first term of his 'A level' (college level) physics course he had been studying the topic of materials with one of his teachers, and "at the moment we're doing about why some materials are brittle, and some aren't, and about the molecules". When Tim was asked about the molecules, he compared molecules to the pieces in a jigsaw:

Interviewer: So what's a molecule?

Tim: Erm it's like a bit of a particle, so, something that makes up something.

I: Have you got any examples?

T: Of a molecule?

I: Yeah, something that makes up something.

T: Erm, like the wood in the table is made out of wood molecules.

I: I see. So, that's one type of molecule, is it, a wood molecule? And there are other types of molecule?

T: Yes it's a bit like a jigsaw, like when you put all the, like you need to put the…, you put them all together to make – something.

I: I see, yeah. So, if I wanted to be really awkward, in what way is it like a jigsaw?

T: Erm, well they sort of fit together, like in a jigsaw some bits are sort of straight and have nice parallel, a nice parallel microstructure, and some, some jigsaws have funny bits that don't fit together quite as nicely.

I: I see. So are there some ways it's not like a jigsaw?

T: Yeah. (Tim laughs.) Well, erm, I dunno, it's like a jigsaw in the way that the bits fit together to make something, to make something, but then again, I dunno.

I: I mean, I quite like this idea of it being like a jigsaw – I was wondering whether, whether you had got that from somewhere, or that's just something you'd come up with?

T: No I just thought about it, just then.

I: Oh that's really creative.

T: It's quite random actually. (laughs)

Tim's comments about a molecules being a bit of a particle was followed up later in the interview, and it transpired he was not sure if a molecule is a bit of a particle – or vice versa.*

So when asked to explain about molecules in materials, Tim used an apparently spontaneous analogy of this being like a jigsaw, with different types of pieces that fitted together. Moreover, he also seemed to recognise that different materials had molecules that fitted together more or less readily, and materials could also be considered to have similar diversity. Tim described this as being 'random', which seems unfair as the analogy clearly has merit, but presumably saw it this way as the comparison had apparently appeared in his consciousness unexpectedly (i.e., the thought had 'popped into his mind', as a kind of insight.)

Tim seemed a little phased by being asked to explain the negative features of the analogy – and this may reflect the tendency to focus on the positive aspects of an analogy, rather than its limitations. Analogy has the potential to channel student thinking in inappropriate directions (e.g., as associative learning impediments) when not considered critically. However, analogies also have potential to help 'make the unfamiliar familiar' and so can be a powerful learning tool.

A molecule is a bit of a particle – or vice versa

Keith S. Taber

Tim was a participant in the Understanding Science project. When I talked to Tim during the first term of his 'A level' (college) course, he had been studying materials with one of his physics teachers. He referred to molecules in wood (suggesting the analogy that molecules are like a jigsaw)*, and referred to a molecule as "a bit of a particle",

I: So what's a molecule?

T: Erm it's like a bit of a particle, so, something that makes up something.

He then went on to refer to how malleability depended upon atoms "because it's just what they're made out of, it's different things to make it up, different atoms and stuff". His understanding of the relationship between atoms and molecules was probed:

Ah, so we've got atoms?

Yeah.

Not molecules?

(Pause, c.2s)

This is something different this time?

Yeah.

Oh, okay, tell me about atoms.

I think, I think atoms make up molecules, which make particles. Well there's them three things, but I'm not entirely sure what order they go in, and I think atoms are the smallest one.

So we've got, these three words are related, are they, atoms, molecules, particles?

Yeah.

You think there is a relationship there?

Yeah.

And, what, they are similar in some way, but not quite the same, or?

Erm, yeah I think it's like order of size.

You think atom's the smallest?

Yeah.

And bigger than an atom you might have?

A molecule. No a particle, then a molecule, I think.

Yeah, is that the same for everything do you think? Or, are some things molecules, and some things atoms, and some things particles?

(Pause, c.2s)

I think it's the same, I think it all goes – like that.

The term 'particle' is ambiguous in school science. Sometimes by particle we mean a very small, but still macroscopic objects, such as a salt grain or a dust speck. However, often, we are referring to the theoretical submicroscopic entities such as atoms, molecules, ions, neutrons etc, which are components of our theoretical models of the structure of matter. (These particles, behave in ways that are sometimes quite unlike familiar particle behaviour because of the extent to which quantum effects can dominate at their scale. The term 'quanticle' has been proposed as a collective term for these particles.) Students are expected to know which usage of 'particles' we might mean at any given time.

Tim assumes to have misunderstood how the term particle is used (as a collective term) when used to describe quantiles, and so has come to the understanding that at this level there are three different categories of quanticle based on relative size: the atoms (the smallest), and also molecules and particles which are larger than atoms, but which he is unsure how to relate.

The use of the everyday word particle to refer to theoretical submicroscopic entities by analogy with the more familiar everyday particles is very clear to scientists and science teachers, but can act as an associative learning impediment to learners who may think that quanticle particles are just like familiar particles, but perhaps quite a lot smaller. In Tim's case, however, it seems that a different 'learning bug' had occurred. Presumably he had commonly come across the use of the terms 'atom', 'molecule' and 'particle' in science lessons to describe the components of matter at the submicroscopic level, but had not realised that particle was being used as a generic term rather than describing something different to atoms and molecules.

Quantile ontology

During his years of school science Tim had constructed a different 'ontology' of the submicroscopic constituents of matter to that expected by his teachers.

Read about learners' alternative conceptions