Single bonds are different to covalent bonds

Single bonds are different to covalent bonds or ionic bonds

Keith S. Taber

Annie was a participant in the Understanding Chemical Bonding project. She was interviewed near the start of her college 'A level' course (equivalent to Y12 of the English school system). Annie was shown, and asked about, a sequence of images representing atoms, molecules and other sub-microscopic structures of the kinds commonl y used in chemistry teaching. She was shown a representation of the resonance between three canonical forms of BF3, sometimes used as away of reflection polar bonding. She had just seen another image representing resonance in the ethanoate ion, and had suggested that it contained a double bond. She had earlier in the interview referred to covalent bonding and ionic bonding, and after introducing the ideas of double bond, suggested that a double bond is different to a covalent bond.

Focal figure (14) presented to Annie

What about diagram 14?…

Oh.

(pause, c.13s)

Seems to be different arrangements. Of the three, or two elements.

Uh hm.

(pause, c.3s)

Which are joined by single bonds.

What, where, what single, what sorry are joined by single bonds?

All the F to the B to the F. Are single bonds they are not double like before. [i.e., a figure discussed earlier in the interview]

So are they covalent bonds? Or ionic bonds, or? Or are single bonds something different again?

Single bonds are different.

This reflected her earlier comment to the effect that a double bond is different to a covalent bond, suggesting that she did not appreciate how covalent bonds are considered to be singular or multiple.

However, as I checked what she was telling me, Annie's account seemed to shift.

They're different to double bonds?

Yeah.

And are they different to covalent bonds?

No 'cause you probably get covalent bonds which are single bonds.

So single bonds, just moments before said to different to covalent bonds, were now 'probably' capable of being covalent. As she continued to answer questions, Annie decided these were 'probably' just alternative terms.

So covalent bonds and single bonds, is that another word for the same thing?

Yeah, probably. But they can probably occur in different, things like in organic you talk about single bonds more than you talk about covalent, and then like in inorganic you talk about covalent bond, more than you talk about single bonding or double bonding.

So you think that maybe inorganic things, like sort of, >> copper iodide or something like that, that would tend to be more concerned with covalent bonds?

< Yeah. < Yeah.

But if you were doing organic things like, I don't know, erm, ethane, >> that's more likely to have single bonds in.

< Yeah. < Yeah.

So single bonds are more likely to occur in carbon compounds.

Yeah.

And covalent bonds are more likely to occur in some other type of compound?

Yeah. Sort of you've got different terminology, like you could probably use single bonds to refer to something in inorganic, but when you are talking about the structures and that, it's easier to talk about single bonds and double bonds, rather than saying that's got a covalent bond or that's got an ionic bond.

Annie's explanation did not seem to be a fully thought-out position. It was not consistent with the way she had earlier reported there being five covalent bonds and one double bond in an ethanoate ion.

It seems likely that in the context of the research interview, where being asked directly about these points, Annie was forced to make explicit the reasons she tended to label particular bonds in specific ways. The interview questions may have acted like Socratic questioning, a kind of scaffolding, leading to new insights. Only in this context did she realise that the single and double bonds her organic chemistry lecturer talked about might actually be referring to the same entities as the covalent bonds her inorganic chemistry lecturer talked about.

It would probably not have occurred to Annie's lecturers (of which, I was one) that she would not realise that single and double bonds were covalent bonds. It may well have been that if she had been taught by the same lecturer in both areas, the tendency to refer to single and multiple bonds in organic compounds (where most bonds were primarily covalent) and to focus on the covalent-ionic dissension in inorganic compounds (where degree of polarity in bonds was a main theme of teaching) would still have lead to the same confusion. Later in the interview, Annie commented that:

if I use ionic or covalent I'm talking about, sort of like a general, bond, but if I use double or single bonds, that's mainly organic, because sort of it represents, sort of the sharing, 'cause like you draw all the molecules out more.

This might be considered an example of fragmentation learning impediment, where a student does not make a link that the teacher is likely to assume is obvious.

A chemical bond would have to be made of atoms

Keith S. Taber

Amy was a participant in the Understanding Science Project. When I had talked to Amy when she was in Y10 she had referred to things being bonded: "where one thing is joined on to another thing, and it can be chemically bonded" and how "in a compound, where two or more elements are joined together, that's an example of chemical bonding".

The following year, in Y11, when she was studying fats she talked about "how they're made up and like with all the double bonds and single bonds" where a double bond was "where there are kind of like two bonds between erm carbon atoms instead of like one" and a bond was "how two atoms are joined together". Later in Y11, Amy told be that she did not know how to explain chemical bonding, but "in lessons like we've always been shown these kind of – things – where you kind of, you've got the atom, and then you've got the little, grey stick things which are meant to be the bonds, and you can just – fit them together."

Source: Image by WikimediaImages from Pixabay

As Amy had told me "everything is made up of atoms", I provocatively asked her if the chemical bond was made of atoms. Amy had "absolutely no idea" but she "suppose(d) it would have to be, wouldn't it".

Not only is this an alternative conception, but to a chemist, or science teacher, the idea that chemical bonds are themselves made up of atoms seems incongruous and offers a potential for infinite regress (are those atoms in the bonds, themselves bonded? If so, are those bonds also made of atoms?)

This alternative conception could be considered a kind of associative learning impediment – that is where a learner makes an unintended link and so applies an idea outside of its range of application. All material is considered to be made of atoms – or at least quanticles comprising one of more nuclei bound to electrons (i.e., ions, molecules). Even this is not an absolute: the material formed immediately after the big bang was not of this form, and nor is the matter in a neutron star, but the material we usually engage with is considered to be made of atom-like units (i.e., ions, molecules).

But to suggest that Amy has made an inappropriate association seems a little unfair. Had Amy thought "all matter was made of atoms" and then suggested that chemical bonding was made of atoms this would be inappropriate as chemical bonding is not material but a process – electrical interactions between quanticles. Yet it is hard to see how one can over-extend the range of 'everything', as in "everything is made up of atoms".

There is an inherent problem with the motto everything is made up of atoms. It is probably something that teachers commonly say, and think is entirely clear – that it is obvious what its scope is – but from the perspective of a student there is not the wealth of background knowledge to appreciate the implied limits on 'everything'.

Learners will readily pick up teaching mottos such as "everything is made of atoms" and take them quite literally: if everything is made of atoms then bonds must be made of atoms. So although she was wrong, I think Amy was just applying something she had learnt.