How NOT to heat up your blast furnace
Keith S. Taber
The challenge of chemical combination
School science teachers are likely aware of how chemistry poses some significant leaning challenges for learners. One of these is the nature of chemical compounds. That is, compounds of chemical elements.
It may seem obvious to learners that when we 'mix' two components with different properties we should get a mixture with a combination of the component properties. So far, so good. But of course, in chemical reactions we do not just mix different substances, but rather they chemically react. So, sodium will react with chlorine, which can be understood in terms of processes occurring at the nanoscopic scale where molecules of a gas interact with the metallic lattice of sodium cations and delocalised electrons.
Sodium and chlorine behaving badly
Although we can model this process, we cannot observe it directly, or even the starting structures at that scale. Understandably, students often struggle to relate the macroscopic and molecular:
As Sodium is a reactive meterial [sic] and chlorine is a acid. When Sodium is placed in Chlorine, Sodium react badly making a flame and maybe a noise. I think why this reaction happen is because as Sodium reactive metal meaning that it atomic configuration is unstable make the metal danger And as Chlorine is a dangerous acid. When sodium is placed in Chlorine, the sodium start dissolving in the acid due to all the particle rushing around quickly pushing together with Chlorine atom. Producing Sodium chloride.
Student setting out on Advanced level chemistry, quoted in Taber, 1996
So, for example, if we do burn sodium in chlorine we end up with sodium chloride which is a new substance that has its own properties – properties which are not simply some mixture of, or intermediate between, the properties of the substances we start with (the reactants).
Indeed, sodium is a dangerous material to handle: it will react vigorously with water (in a person's sweat for example!) and burns violently in air. Chlorine is so nasty that it has been used as a weapon of war (and since banned as an 'unacceptable' weapon, even in war). In the 'great' war ('great' only because of its scale) the way men died in agony from breathing chlorine was much reported, as well as the effects on those who survived the gas – being blinded for example.
"In all my dreams before my helpless sight,
He plunges at me, guttering, choking, drowning."
Wilfred Owen, Dulce et Decorum Est 1
Sodium chloride certainly has its associated hazards – if eaten in excess it is a risk factor for high blood pressure for example – but is certainly not dangerous in anything like the same sense. Many people put sodium chloride on their chips (often along with ethanoic acid solution). No one would want sodium on their food, or to eat in a canteen with a chlorine atmosphere!
When is something both present and not present?
Why this is especially challenging is that the chemistry teacher tells the students that although, at one level, the new substance does not contain its precursors – there is no sodium (substance) or chlorine (substance) in the substance sodium chloride – yet it is a compound of these elements and in some some sense the elements remain 'in' the compound.
This links to that key theoretical framework in chemistry where we can explain macroscopic (bench scale) phenomena in terms of models of matter at the submicroscopic (indeed nanoscopic or even subnanoscopic) scale. The sense in which sodium chloride 'contains' sodium and chlorine is that it is comprised of a lattice of sodium ions and chloride ions – species which include the specific types of nuclei (those of charge +11 and +17 respectively) that define those elements.
So, when we ask whether the elements are in some sense 'in' the compound we have to think in terms of these abstract models at a tiny scale – there is no sodium substance or chlorine substance present, but there is something that is inherently identified with these two elements. In a sense, but a very abstract sense, the elements are still present. Or, perhaps, better, something intrinsic to those elements is still present.
"We are working here with two complementary meanings for the idea of element, one at the (macroscopic) level of phenomena we can demonstrate to students (substances, and their reactions); the other deriving from a theoretical model in terms of conjectured submicroscopic entities ('quanticles'…).
However, there is also a sense in which an element is considered to be present, in a virtual or potential sense, within its compounds. This use is more common among French-speaking chemists, and in the English-speaking world we normally consider it quite inappropriate to suggest that sodium is somehow present in sodium chloride, or hydrogen in water. Yet, of course, chemical formulae (NaCl, H2O, etc) tell us that the compounds somehow 'contain' the elements."
Taber, 2012, p.19
A source of alternative conceptions
This is easy to understand for someone very familiar with molecular level models – but is understandably difficult for novice learners. Thus we can reasonably understand why there are common alternative conceptions along the lines of students thinking that, for example, a compound of a dangerous element (say chlorine) must also be dangerous. Yet we 'mix' and react a soft, reactive, metal and a choking green gas – and get hard white crystals that safely dissolve in water to give a solution we can use in cooking, or to soak our feet, or to gargle with.
An historical precedent
Because science teachers and chemists are so used to thinking in models at the molecular level, we can forget just how unfamiliar this perspective is to the novice, and so the challenge of acquiring the scientific ways of thinking that have become 'second nature' through extensive application.
I was therefore fascinated to see an example of this same alternative conception, assuming a compound will show the properties of its constituent elements, reported by the scientist Sir John Herschel (astronomer, chemist, mathematician, philosopher…), not in a school science context, but rather an industrial context.
"The smelting of iron requires the application of the most violent heat that can be raised, and is commonly performed in tall furnaces, urged by great iron bellows driven by steam-engines. Instead of employing this power to force air into the furnace through the intervention of bellows, it was, on one occasion, attempted to employ the steam itself in, apparently, a much less circuitous manner; viz. by directing the current of steam in a violent blast, from the boiler at once into the fire. From one of the known ingredients of steam being a highly inflammable body, and the other that essential part of the air which supports combustion, it was imagined that this would have the effect of increasing the fire to tenfold fury, whereas it simply blew it out; a result which a slight consideration of the laws of chemical combination, and the state in which the ingredient elements exist in steam, would have enabled any one to predict without a trial."
Herschel, J. F. W. (1830/1851/2017), §37 2
So, here, instead of dropping marks on a test, this misunderstanding of the chemistry leads to a well-intentioned industrialist trying to generate heat in a blast furnace by adding water to the fire. But this does remind us just how counter-intuitive some of the things taught in science are. It might also be a useful anecdote to share with students to help them appreciate that that their errors are by no means unusual, or necessarily a reflection on their ability.
Perhaps this might even be a useful teaching example that could be built up into a historical anecdote which students might readily recall and that will help them remember that compounds have new properties that may be quite different from their constituent elements. So, while a mixture of the flammable gas hydrogen and oxygen can be explosive, a combination (that is, a chemical combination – a compound), of hydrogen and oxygen will not 'feed' a fire but dampen it down. Just as well, really, as otherwise emergency fire and rescue services would need to find an alternative to the widely available, inexpensive, recyclable, non-toxic, agent they widely use in fighting fires.
Work cited:
- Herschel, J. F. W. (1830/1851/2017). Preliminary Discourse on the Study of Natural Philosophy. Project Gutenberg EBook.
- Taber, K. S. (1996) Chlorine is an oxide, heat causes molecules to melt, and sodium reacts badly in chlorine: a survey of the background knowledge of one A level chemistry class, School Science Review, 78 (282), pp.39-48. [Download the manuscript version here.]
- Taber, K. S. (2012). Key concepts in chemistry. In K. S. Taber (Ed.), Teaching Secondary Chemistry (2nd ed., pp. 1-47). London: Hodder Education. [Read the author's manuscript version.]
- Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156-168. doi:10.1039/C3RP00012E
Notes:
1 Wilfred Owen was famous for his war poetry written about the horrors of the trench fighting in the 'first world war'. Owen was killed a week before the war ended. 'Dulce Et Decorum Est' referred to a Latin phrase or motto (dulce et decorum est pro patria mori) that Owen labelled as 'the old lie', that it was sweet and honourable to die in the service of one's country.
2 For some reason, "…it was imagined that this would have the effect of increasing the fire to tenfold fury, whereas it simply blew it out…" puts me in mind of
"the mighty ships tore across the empty wastes of space and finally dived screaming on to…Earth – where due to a terrible miscalculation of scale the entire battle fleet was accidentally swallowed by a small dog."
Douglas Adams, The Hitchhiker's Guide to the Galaxy